【題目】如圖是我國某海域內(nèi)的一個(gè)小島,其平面圖如圖甲所示,小明據(jù)此構(gòu)造出該島的一個(gè)數(shù)學(xué)模型如圖乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=3千米,請據(jù)此解答如下問題:

(1)求該島的周長和面積;(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732,≈2.449)

(2)求∠ACD的余弦值.

【答案】(1) 周長:55千米,面積:157平方千米;(2).

【解析】

(1)連接AC,根據(jù)AB=BC=15千米,∠B=90°得到∠BAC=∠ACB=45° ,AC=15千米,再根據(jù)∠D=90°利用勾股定理求得AD的長后即可求周長和面積;

(2)直接利用余弦的定義求解即可

(1)連接AC

∵AB=BC=15千米,∠B=90°

∴∠BAC=∠ACB=45° AC=15千米

又∵∠D=90°

∴AD=(千米)

∴周長=AB+BC+CD+DA=30+3+12=30+4.242+20.784≈55(千米)

面積=S△ABC+S△ADC=112.5+18≈157(平方千米)

(2)cos∠ACD=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a+10=b+12=c+15,則a2+b2+c2﹣ab﹣bc﹣ac=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BCBA,AD=DC,

1)若BDCD,∠C=60°,BC=10,求AD的長;

2)若BD平分∠ABC,求證:∠A+C=180°。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的一條高與一腰的夾角為40°,則等腰三角形的一個(gè)底角為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰ABC中,∠BAC=30°,AB=AC,PAB=α,點(diǎn)B關(guān)于直線AP的對稱點(diǎn)為點(diǎn)D,連接AD,連接BDAP于點(diǎn)G,連接CDAP于點(diǎn)E,交AB于點(diǎn)F.

(1)如圖當(dāng)α=15°時(shí),①按要求畫出圖形,②求出∠ACD的度數(shù),③探究DEBF的倍數(shù)關(guān)系并加以證明;

(2)在直線AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的過程中(0°<α<75°),當(dāng)△AEF為等腰三角形時(shí),畫出相應(yīng)圖形直接求出α的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四張質(zhì)地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.

(1)求隨機(jī)抽取一張卡片,恰好得到數(shù)字2的概率;

(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見信息圖.你認(rèn)為這個(gè)游戲公平嗎?請用列表法或畫樹形圖法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:一個(gè)點(diǎn)將一條直線分為兩段,如果其中較長的一段與整個(gè)線段的比等于較短一段與較長一段的比,我們就說這個(gè)點(diǎn)是這條線段的黃金分割點(diǎn),較長的一段與整個(gè)線段的比值或較短一段與較長一段的比值叫做黃金分割數(shù),用一元二次方程的知識可以求出黃金分割數(shù)是我國國旗上的正五角星中就存在黃金分割點(diǎn)解決問題:

如圖,已知A、BC、D、E的五等分點(diǎn),求的度數(shù);

AC、AD分別與BE交于點(diǎn)M求證:點(diǎn)M是線段BN的一個(gè)黃金分割點(diǎn).

,則______若有根號保留根號

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動點(diǎn)P從點(diǎn)B出發(fā)沿射線BC1cm/s的速度移動,設(shè)運(yùn)動的時(shí)間為t秒.

1)求BC邊的長;

2)當(dāng)△ABP為直角三角形時(shí),求t的值;

3)當(dāng)△ABP為等腰三角形時(shí),求t的值

查看答案和解析>>

同步練習(xí)冊答案