【題目】如圖,在等腰中,,B是邊AD上一點(diǎn),以AB為直徑的經(jīng)過點(diǎn)P,C是上一動(dòng)點(diǎn),連接AC,PC,PC交AB于點(diǎn)E,且.
(1)求證:PD是的切線;
(2)連接OP,PB,BC,OC,若的直徑是4,則:
①當(dāng)四邊形APBC是矩形時(shí),求DE的長;
②當(dāng)______時(shí),四邊形OPBC是菱形.
【答案】(1)見解析;(2)①;②3.
【解析】
(1)根據(jù)題意連接OP,運(yùn)用等腰三角形的性質(zhì)以及利用切線的定理即證明即可;
(2)①由題意可知PC是的直徑,由(1)知,在中,,利用含60°的直角三角形的性質(zhì)進(jìn)行分析求解;
②根據(jù)題意利用菱形的性質(zhì)即對(duì)角線互相垂直平分,以此進(jìn)行分析即可.
解:(1)證明:如圖1,連接OP.
∵,∴.
又∵,
∴.
∵,
∴,
∴.
又∵OP為半徑,∴PD是的切線.
(2)解:①如圖2,∵在矩形中,,
∴PC是的直徑,
∴點(diǎn)與點(diǎn)E重合.
由(1)知,在中,.
又∵,
∴.
②如圖3,∵四邊形是菱形,∴PC,OB互相垂直平分,∴,∴.
∵,,∴.
故答案為:3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),∠OAB=30°,若點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,則經(jīng)過點(diǎn)B的反比例函數(shù)解析式為( )
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)y=(x>0)的圖象于點(diǎn)A、B,交x軸于點(diǎn)C.
(1)求m的取值范圍;
(2)若點(diǎn)A的坐標(biāo)是(2,-4),且=,求m的值和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)有一等腰直角三角板(∠ACB=90°)和一直線MN,過點(diǎn)C作CE⊥MN于點(diǎn)E,過點(diǎn)B作BF⊥MN于點(diǎn)F.當(dāng)點(diǎn)E與點(diǎn)A重合時(shí)(如圖①),易證:AF+BF=2CE;當(dāng)三角板繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至圖②、圖③的位置時(shí),上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,線段AF、BF、CE之間又有怎樣的數(shù)量關(guān)系,請(qǐng)直接寫出你的猜想,請(qǐng)直接寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A在第一象限,點(diǎn)C的坐標(biāo)為(1,0),△AOC是等邊三角形,現(xiàn)把△AOC按如下規(guī)律進(jìn)行旋轉(zhuǎn):第1次旋轉(zhuǎn),把△AOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)120°后得到△A1O1C,點(diǎn)A1、O1分別是點(diǎn)A、O的對(duì)應(yīng)點(diǎn),第2次旋轉(zhuǎn),把△A1O1C繞著點(diǎn)A1按順時(shí)針方向旋轉(zhuǎn)120°后得到△A1O2C1,點(diǎn)O2、C1分別是點(diǎn)O1、C的對(duì)應(yīng)點(diǎn),第3次旋轉(zhuǎn),把△A1O2C1繞著點(diǎn)O2按順時(shí)針方向旋轉(zhuǎn)120°后得到△A2O2C2,點(diǎn)A2、C2分別是點(diǎn)A1、C1的對(duì)應(yīng)點(diǎn),……,依此規(guī)律,第6次旋轉(zhuǎn),把△A3O4C3繞著點(diǎn)O4按順時(shí)針方向旋轉(zhuǎn)120°后得到△A4O4C4,點(diǎn)A4、C4分別是點(diǎn)A3、C3的對(duì)應(yīng)點(diǎn),則點(diǎn)A4的坐標(biāo)是( 。
A.(,)B.(6,0)C.(,)D.(7,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校組織的數(shù)學(xué)競賽中,八(1)班比賽成績分為、、、四個(gè)等級(jí),其中相應(yīng)等級(jí)的得分依次記為100分,90分,80分,70分,學(xué)校將八(1)班成績現(xiàn)整理并繪制成如下的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)以上提供的信息解答下列問題:
(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖
(2)八年級(jí)一班競賽成績眾數(shù)是________,中位數(shù)落在________類.
(3)若該校有1500名學(xué)生,請(qǐng)估計(jì)該校本次競賽成績?yōu)?/span>類的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在三邊互不相等的△ABC中, D,E,F分別是AB,AC,BC邊的中點(diǎn).連接DE,過點(diǎn)C作CM∥AB交DE的延長線于點(diǎn)M,連接CD、EF交于點(diǎn)N,則圖中全等三角形共有( )
A.3對(duì)B.4對(duì)C.5對(duì)D.6對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,第一顆彈珠彈出后其速度(米/分鐘)與時(shí)間(分鐘)前2分鐘滿足二次函數(shù),后3分鐘滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分鐘.
(1)求第一顆彈珠的速度(米/分鐘)與時(shí)間(分鐘)之間的函數(shù)關(guān)系式;
(2)第一顆彈珠彈出1分鐘后,彈出第二顆彈珠,第二顆彈珠的運(yùn)行情況與第一顆相同,直接寫出第二顆彈珠的速度(米/分鐘)與彈出第一顆彈珠后的時(shí)間(分鐘)之間的函數(shù)關(guān)系式;
(3)當(dāng)兩顆彈珠同時(shí)在軌道上時(shí),第____分鐘末兩顆彈珠的速度相差最大,最大相差______;
(4)判斷當(dāng)兩顆彈珠同時(shí)在軌道上時(shí),是否存在某時(shí)刻速度相同?請(qǐng)說明理由,并指出可以通過解哪個(gè)方程求出這一時(shí)刻.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在矩形AEFD中,點(diǎn)C為EF上一點(diǎn),點(diǎn)B為FE的延長線上一點(diǎn),連接CD、AB,.
(1)如圖1,求證:;
(2)如圖2,連接BD、AC交于點(diǎn),若,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中四個(gè)直角三角形,使寫出的每個(gè)三角形的面積等于四邊形的.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com