【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都是1,每個小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形.
(1)在圖1中,畫一個三角形,使它的三邊長都是有理數(shù);

(2)在圖2中,畫一個直角三角形,使它們的三邊長都是無理數(shù);

(3)在圖3中,畫一個正方形,使它的面積是10.

【答案】
(1)解:三邊分別為:3、4、5 (如圖1)


(2)解:三邊分別為: 、2 、 (如圖2)


(3)解:畫一個邊長為 的正方形(如圖3)


【解析】(1)利用勾股定理,找長為有理數(shù)的線段,畫三角形即可.(2)畫一個邊長 ,2 的三角形即可;(3)畫一個邊長為 的正方形即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解無理數(shù)的相關(guān)知識,掌握在理解無理數(shù)時,要抓住“無限不循環(huán)”這個要點(diǎn),歸納起來有四類:(1)開方開不盡的數(shù);(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù);(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;(4)某些三角函數(shù),如sin60o,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C為△ABD的外接圓上的一動點(diǎn)(點(diǎn)C不在 上,且不與點(diǎn)B,D重合),∠ACB=∠ABD=45°
(1)求證:BD是該外接圓的直徑;
(2)連結(jié)CD,求證: AC=BC+CD;
(3)若△ABC關(guān)于直線AB的對稱圖形為△ABM,連接DM,試探究DM2 , AM2 , BM2三者之間滿足的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題引入:

(1)如圖①,在△ABC中,點(diǎn)O是∠ABC和∠ACB平分線的交點(diǎn),若∠A=α,則∠BOC=(用α表示);如圖②,∠CBO= ∠ABC,∠BCO= ∠ACB,∠A=α,則∠BOC=(用α表示)拓展研究:
(2)如圖③,∠CBO= ∠DBC,∠BCO= ∠ECB,∠A=α,請猜想∠BOC=(用α表示),并說明理由.
類比研究:
(3)BO、CO分別是△ABC的外角∠DBC、∠ECB的n等分線,它們交于點(diǎn)O,∠CBO= ∠DBC,∠BCO= ∠ECB,∠A=α,請猜想∠BOC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣ [(x﹣2)2+n]與x軸交于點(diǎn)A(m﹣2,0)和B(2m+3,0)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連結(jié)BC.

(1)求m、n的值;
(2)如圖2,點(diǎn)N為拋物線上的一動點(diǎn),且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點(diǎn)M、P分別為線段BC和線段OB上的動點(diǎn),連接PM、PC,是否存在這樣的點(diǎn)P,使△PCM為等腰三角形,△PMB為直角三角形同時成立?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC相交于點(diǎn)OOA=OD,OB=OC.下列結(jié)論正確的是(  )

A. AOB≌△DOC B. ABO≌△DOC C. A=C D. B=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)前往B地,甲出發(fā)1h后,乙出發(fā).設(shè)甲與A地相距y(km),乙與A地相距y(km),甲離開A地時間為x(h),y、yx之間的函數(shù)圖象如圖所示.

(1)甲的速度是   km/h.

(2)請分別求出y、yx之間的函數(shù)關(guān)系式.

(3)當(dāng)乙與A地相距240km時,甲與B地相距多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“龜兔首次賽跑“之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點(diǎn)出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:
①“龜兔再次賽跑”的路程為1000米
②兔子和烏龜同時從起點(diǎn)出發(fā)
③烏龜在途中休息了10分鐘
④兔子在途中750米處追上烏龜
其中說法正確的是(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、圖2中,點(diǎn)C為線段AB上一點(diǎn),△ACM△CBN都是等邊三角形.

(1) 如圖1,線段AN與線段BM是否相等?證明你的結(jié)論;

(2) 如圖2,ANMC交于點(diǎn)E,BMCN交于點(diǎn)F,探究△CEF的形狀,并證明你的結(jié)論.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(1) (2)

(3) (4)

(5) (6)

查看答案和解析>>

同步練習(xí)冊答案