【題目】一列動(dòng)車從A地開往B地,一列普通列車從B地開往A地,兩車均勻速行駛并同時(shí)出發(fā),設(shè)普通列車行駛的時(shí)間為x(小時(shí)),兩車之間的距離為y(千米),如圖中的折線表示y與x之間的函數(shù)關(guān)系,下列說法中正確的是:( 。
①AB兩地相距1000千米;②兩車出發(fā)后3小時(shí)相遇;③普通列車的速度是100千米/小時(shí);④動(dòng)車從A地到達(dá)B地的時(shí)間是4小時(shí).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高中學(xué)校為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)三班學(xué)生即將所穿校服型號(hào)情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6種型號(hào)).
根據(jù)以上信息,解答下列問題:
(Ⅰ)該班共有 名學(xué)生,其中穿175型校服的學(xué)生有 名;
(Ⅱ)在條形統(tǒng)計(jì)圖中,請(qǐng)把空缺部分補(bǔ)充完整.
(Ⅲ)在扇形統(tǒng)計(jì)圖中,185型校服所對(duì)應(yīng)的扇形圓心角的大小為 ;
(Ⅳ)該班學(xué)生所穿校服型號(hào)的眾數(shù)為 ,中位數(shù)為 .
(Ⅴ)如果該校預(yù)計(jì)招收新生600名,根據(jù)樣本數(shù)據(jù),估計(jì)新生中穿170型校服的學(xué)生大約有 名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,∠C=90°,∠B=30°,AD是△ABC的角平分線.
(1)求證:BD=2CD;
(2)若CD=2,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)七、八年級(jí)各選名同學(xué)參加“創(chuàng)全國文明城市”知識(shí)競(jìng)賽,計(jì)分分制,選手得分均為整數(shù),成績(jī)達(dá)到分或分以上為合格,達(dá)到分或分以上為優(yōu)秀,這次競(jìng)賽后,七、八年級(jí)兩支代表隊(duì)成績(jī)分布的條形統(tǒng)計(jì)圖和成績(jī)分析表如下,其中七年級(jí)代表隊(duì)得分、分選手人數(shù)分別為,.
隊(duì)列 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
七年級(jí) | |||||
八年級(jí) |
(1)根據(jù)圖表中的數(shù)據(jù),求,的值.
(2)直接寫出表中的 , .
(3)你是八年級(jí)學(xué)生,請(qǐng)你給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校學(xué)生每周參加課外輔導(dǎo)班的情況,隨機(jī)調(diào)査了部分學(xué)生一周內(nèi)參加課外輔導(dǎo)班的學(xué)科數(shù),并將調(diào)查結(jié)果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計(jì)圖(其中A:0個(gè)學(xué)科,B:1個(gè)學(xué)科,C:2個(gè)學(xué)科,D:3個(gè)學(xué)科,E:4個(gè)學(xué)科或以上),請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)請(qǐng)將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(2)根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導(dǎo)班的學(xué)科數(shù)的眾數(shù)是 個(gè)學(xué)科;
(3)若該校共有2000名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計(jì)該校全體學(xué)生一周內(nèi)參加課外輔導(dǎo)班在3個(gè)學(xué)科(含3個(gè)學(xué)科)以上的學(xué)生共有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,,且.
求經(jīng)過,,三點(diǎn)的拋物線的解析式.
在中拋物線的對(duì)稱軸上是否存在點(diǎn),使的周長最?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
若點(diǎn)為拋物線上一點(diǎn),點(diǎn)為對(duì)稱軸上一點(diǎn),是否存在點(diǎn),使得,,,構(gòu)成的四邊形是平行四邊形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn)E(1,0)和F(5,0),并交y軸于D(0,-5);拋物線:(a≠0),
(1)試求拋物線的函數(shù)解析式;
(2)求證: 拋物線 與x軸一定有兩個(gè)不同的交點(diǎn);
(3)若a=1
①拋物線、頂點(diǎn)分別為 ( , )、( , ) ;當(dāng)x的取值范圍是_________ 時(shí),拋物線、 上的點(diǎn)的縱坐標(biāo)同時(shí)隨橫坐標(biāo)增大而增大;
②已知直線MN分別與x軸、、分別交于點(diǎn)P(m,0)、M、N,且MN∥y軸,當(dāng)1≤m≤5時(shí),求線段MN的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)三角形的兩條邊的和是第三邊的兩倍,則稱這個(gè)三角形是“優(yōu)三角形”,這兩條邊的比稱為“優(yōu)比”(若這兩邊不等,則優(yōu)比為較大邊與較小邊的比),記為.
(1)命題:“等邊三角形為優(yōu)三角形,其優(yōu)比為1”,是真命題還是假命題?
(2)已知為優(yōu)三角形,,,,
①如圖1,若,,,求的值.
②如圖2,若,求優(yōu)比的取值范圍.
(3)已知是優(yōu)三角形,且,,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com