精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形ABCD中,點EF、G、H分別是邊AB、BCCD、DA的中點,順次連接E、F、GH,得到的四邊形EFGH叫中點四邊形.

1)求證:四邊形EFGH是平行四邊形;

2)如圖,當四邊形ABCD變成等腰梯形時,它的中點四邊形是菱形,請你探究并填空:

當四邊形ABCD變成平行四邊形時,它的中點四邊形是

當四邊形ABCD變成矩形時,它的中點四邊形是 ;

當四邊形ABCD變成菱形時,它的中點四邊形是 ;

當四邊形ABCD變成正方形時,它的中點四邊形是

3)根據以上觀察探究,請你總結中點四邊形的形狀由原四邊形的什么決定的?

【答案】(1)相等;(2)垂直;(3)見解析.

【解析】

1)連接BD.利用三角形中位線定理推出所得四邊形對邊平行且相等,故為平行四邊形;

2)連接ACBD.根據三角形的中位線定理,可以得到所得四邊形的兩組對邊分別和原四邊形的對角線平行,且分別等于原四邊形的對角線的一半,再根據矩形、菱形、正方形的判定方法進行判定即可

3)由(2)可知,中點四邊形的形狀是由原四邊形的對角線的關系決定的.

1)證明:連接BD

E、H分別是AB、AD的中點,

EHABD的中位線.

EH=BD,EHBD

同理得FG=BD,FGBD

EH=FG,EHFG

∴四邊形EFGH是平行四邊形.

2)連接ACBD.根據三角形的中位線定理,可以得到所得四邊形的兩組對邊分別和原四邊形的對角線平行,且分別等于原四邊形的對角線的一半.

若順次連接對角線相等的四邊形各邊中點,則所得的四邊形的四條邊都相等,故所得四邊形為菱形;

若順次連接對角線互相垂直的四邊形各邊中點,則所得的四邊形的四個角都是直角,故所得四邊形為矩形;

若順次連接對角線相等且互相垂直的四邊形各邊中點,則綜合上述兩種情況,故所得的四邊形為正方形;

故答案為:平行四邊形,菱形,矩形,正方形;

3)中點四邊形的形狀是由原四邊形的對角線的關系決定的.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCF中,∠ABC=60°,延長BA至點D,延長CB至點E,使BE=AD,連結CDEA,延長EACD于點G

1)求證:ACE≌△CBD

2)求∠CGE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,以ABC的邊AB為直徑作O,交AC邊于點EBD平分ABEACF,交O于點D,且BDE=∠CBE

(1)求證:BCO的切線;

(2)延長ED交直線AB于點P,如圖2,若PA=AO,DE=3,DF=2,求的值及AO的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B⊙O的切線交直線AC于點D,點ECH的中點,連接AE并延長交BD于點F,直線CFAB的延長線于G.

(1)求證:AEFD=AFEC;

(2)求證:FC=FB;

(3)若FB=FE=2,求⊙O的半徑r的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將如圖1中的邊長為1個單位長度的10個小正方形,沿剪開,后把陰影部分補到如圖2三角形與三角形位置中,拼成了一個大正方形,大正方形的邊長設為;如圖3將直徑為1的圓放在點處,對應的數位,將圓周沿數軸向左邊滾動一周到點,對應數為,請完成下面問題:

1)求出的值.

2)化簡求值:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面各問題中給出的兩個變量x,y,其中yx的函數的是

x是正方形的邊長,y是這個正方形的面積;

x是矩形的一邊長,y是這個矩形的周長;

x是一個正數,y是這個正數的平方根;

x是一個正數,y是這個正數的算術平方根.

A. ①②③B. ①②④C. ②④D. ①④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校舉行全體學生“漢字聽寫”比賽,每位學生聽寫漢字39個.隨機抽取了部分學生的聽寫結果,繪制成如下的圖表.

根據以上信息完成下列問題:

1統(tǒng)計表中的m= ,n= ,并補全條形統(tǒng)計圖;

2扇形統(tǒng)計圖中“C組”所對應的圓心角的度數是 ;

3已知該校共有900名學生,如果聽寫正確的字的個數少于24個定為不合格,請你估計該校本次聽寫比賽不合格的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線y=x2+bx+cb,c為常數的頂點為P,等腰直角三角形ABC的頂點A的坐標為0,﹣1,C的坐標為4,3,直角頂點B在第四象限.

1如圖,若該拋物線過A,B兩點,求該拋物線的函數表達式;

2平移1中的拋物線,使頂點P在直線AC上滑動,且與AC交于另一點Q.

i若點M在直線AC下方,且為平移前1中的拋物線上的點,當以M、P、Q三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點M的坐標;

ii取BC的中點N,連接NP,BQ.試探究是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知數軸上的點A對應的數為6,B是數軸上的一點,且AB=10,動點P從點A出發(fā),以每秒6個單位長度的速度沿著數軸向左勻速運動,設運動時間為t秒(t>0).

(1)數軸上點B對應的數是_______,點P對應的數是_______(用t的式子表示);

(2)動點Q從點B與點P同時出發(fā),以每秒4個單位長度的速度沿著數軸向左勻速運動,試問:運動多少時間點P可以追上點Q?

(3)M是AP的中點,N是PB的中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若有變化,說明理由;若沒有變化,請你畫出圖形,并求出MN的長.

查看答案和解析>>

同步練習冊答案