【題目】某企業(yè)接到加工糧食任務,要求天加工完噸糧食.該企業(yè)安排甲、乙兩車間共同完成加工任務.乙車間因維修設備,中途停工一段時間,維修設備后提高了加工效率,繼續(xù)加工,直到與甲車間同時完成加工任務為止.設甲、乙兩車間各自加工糧食數(shù)量(噸)與甲車間加工時間(天)之間的函數(shù)關系如圖①所示;未加工糧食(噸)與甲車間加工時間(天)之間的函數(shù)關系如圖②所示、請結合圖象解答下列問題:
(1)甲車間每天加工糧食 噸, ;
(2)求乙車間維修設備后,乙車間加工糧食數(shù)量與之間的函數(shù)關系式;
(3)求加工噸糧食需要幾天完成.
【答案】(1)30,25;(2);(3)加工364噸糧食需要6天完成.
【解析】
(1)根據(jù)題意,由圖2得出兩個車間同時加工和甲單獨加工的速度;
(2)用待定系數(shù)法解決問題;
(3)先計算出未加工糧食的范圍,再求出對應范圍內的w與x的關系式,即可求解.
(1)由圖象可知,第一天甲乙共加工530-475=55(噸),第二、三天乙停止工作,甲單獨加475-415=60(噸),則甲單獨加工每天能加工602=30(噸),
則乙一天加工a=55-30=25噸.
故答案為:30,25.
(2)設y=kx+b
將代入,得
解得
∴.
(3)530-364=166,
由圖2可知,加工的天數(shù)3<x<8.
設當3x8,w=mx+n.
將(3,415),(8,0)代入w=mx+n,得
解得
∴w=-83x+664.
當w=166時,x=6.
∴加工364噸糧食需要6天完成.
科目:初中數(shù)學 來源: 題型:
【題目】越野自行車是中學生喜愛的交通工具,市場巨大,竟爭也激烈.某品牌經(jīng)銷商經(jīng)營的型車去年銷售總額為萬元,今年每輛售價比去年降低元,若賣出的數(shù)量相同,銷售總額將比去年減少.
(1)設今年型車每輛銷售價為元,求的值;
(2)該品牌經(jīng)銷商計劃新進一批型車和新款型車共輛,且型車的進貨數(shù)量不超過型車數(shù)量的兩倍,請問應如何安排兩種型號車的進貨數(shù)量,才能使這批售出后獲利最多?
、兩種型號車今年的進貨和銷售價格表
型車 | 型車 | |
進貨價 | 元/輛 | 元/輛 |
銷售價 | 元/輛 | 元/輛 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學生參加決賽,根據(jù)測試成績(成績都不低于50分)繪制出如圖所示的部分頻數(shù)分布直方圖.
請根據(jù)圖中信息完成下列各題.
(1)將頻數(shù)分布直方圖補充完整人數(shù);
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少;
(3)現(xiàn)將從包括小明和小強在內的4名成績優(yōu)異的同學中隨機選取兩名參加市級比賽,求小明與小強同時被選中的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,,點G在邊上,連接,作于點E,于點F,連接、,設,,.
(1)求證:;
(2)求證:;
(3)若點G從點B沿邊運動至點C停止,求點E,F所經(jīng)過的路徑與邊圍成的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,將繞點C順時針旋轉得到,點D落在線段AB上,連接BE.
(1)求證:DC平分;
(2)試判斷BE與AB的位置關系,并說明理由:
(3)若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于二次函數(shù)的三個結論:①對任意實數(shù)m,都有與對應的函數(shù)值相等;②若3≤x≤4,對應的y的整數(shù)值有4個,則或;③若拋物線與x軸交于不同兩點A,B,且AB≤6,則或.其中正確的結論是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】成都“339”電視塔作為成都市地標性建筑之一,現(xiàn)已成為外地游客到成都旅游打卡的網(wǎng)紅地.如圖,為測量電視塔觀景臺處的高度,某數(shù)學興趣小組在電視塔附近一建筑物樓頂處測得塔處的仰角為45°,塔底部處的俯角為22°.已知建筑物的高約為61米,請計算觀景臺的高的值.
(結果精確到1米;參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車公司為了解某型號汽車在同一條件下的耗油情況,隨機抽取了n輛該型號汽車耗油所行使的路程作為樣本,并繪制了以下不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖.
根據(jù)題中已有信息,解答下列問題:
(1)求n的值,并補全頻數(shù)分布直方圖;
(2)若該汽車公司有600輛該型號汽車,試估計耗油所行使的路程低于的該型號汽車的輛數(shù);
(3)從被抽取的耗油所行使路程在,這兩個范圍內的4輛汽車中,任意抽取2輛,求抽取的2輛汽車來自同一范圍的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com