【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,給出下列四個(gè)結(jié)論:
①AE=CF;
②△EPF是等腰直角三角形;
③EF=AB;
④,當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),上述結(jié)論中始終正確的有________(把你認(rèn)為正確的結(jié)論的序號(hào)都填上).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:AD平分∠CAE,AD∥BC.
(1)求證:△ABC是等腰三角形.
(2)當(dāng)∠CAE等于多少度時(shí)△ABC是等邊三角形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=kx+b與拋物線y= x2交于A(x1 , y1)、B(x2 , y2)兩點(diǎn),當(dāng)OA⊥OB時(shí),直線AB恒過(guò)一個(gè)定點(diǎn),該定點(diǎn)坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用n邊形的對(duì)角線把n邊形分割成(n-2)個(gè)三角形,共有多少種不同的分割方案(n≥4)?
(探究)為了解決上面的數(shù)學(xué)問(wèn)題,我們采取一般問(wèn)題特殊化的策略,先從最簡(jiǎn)單情形入手,再逐次遞進(jìn)轉(zhuǎn)化,最后猜想得出結(jié)論.不妨假設(shè)n邊形的分割方案有Pn種.
探究一:用四邊形的對(duì)角線把四邊形分割成2個(gè)三角形,共有多少種不同的分割方案?
如圖①,圖②,顯然,只有2種不同的分割方案.所以,P4=2.
探究二:用五邊形的對(duì)角線把五邊形分割成3個(gè)三角形,共有多少種不同的分割方案?
不妨把分割方案分成三類:
第1類:如圖③,用A,E與B連接,先把五邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)四邊形,再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.
第2類:如圖④,用A,E與C連接,把五邊形分割成3個(gè)三角形,有1種不同的分割方案,可視為種分割方案.
第3類:圖⑤,用A,E與D連接,先把五邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)四邊形,再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.
所以,P5 =++=(種)
探究三:用六邊形的對(duì)角線把六邊形分割成4個(gè)三角形,共有多少種不同的分割方案?
不妨把分割方案分成四類:
第1類:如圖⑥,用A,F(xiàn)與B連接,先把六邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)五邊形,再把五邊形分割成3個(gè)三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種不同的分割方案.
第2類:如圖⑦,用A,F(xiàn)與C連接,先把六邊形分割轉(zhuǎn)化成2個(gè)三角形和1個(gè)四邊形.再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案
第3類:如圖⑧,用A,F(xiàn)與D連接,先把六邊形分割轉(zhuǎn)化成2個(gè)三角形和1個(gè)四邊形.再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案.
第4類:如圖⑨,用A,F(xiàn)與E連接,先把六邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)五邊形.再把五邊形分割成3個(gè)三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種分割方案.
所以,P6 =(種)
探究四:用七邊形的對(duì)角線把七邊形分割成5個(gè)三角形,則P7與P6的關(guān)系為:
P7 = ,共有_____種不同的分割方案.……
(結(jié)論)用n邊形的對(duì)角線把n邊形分割成(n-2)個(gè)三角形,共有多少種不同的分割方案(n≥4)?(直接寫(xiě)出Pn與Pn -1的關(guān)系式,不寫(xiě)解答過(guò)程).
(應(yīng)用)用八邊形的對(duì)角線把八邊形分割成6個(gè)三角形,共有多少種不同的分割方案? (應(yīng)用上述結(jié)論,寫(xiě)出解答過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形OABC的頂點(diǎn)O(0,0),B(2,2),若菱形繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),每秒旋轉(zhuǎn)45°,則第60秒時(shí),菱形的對(duì)角線交點(diǎn)D的坐標(biāo)為( )
A.(1,﹣1)
B.(﹣1,﹣1)
C.( ,0)
D.(0,﹣ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小東在教學(xué)樓距地面9米高的窗口C處,測(cè)得正前方旗桿頂部A點(diǎn)的仰角為37°,旗桿底部B點(diǎn)的俯角為45°,升旗時(shí),國(guó)旗上端懸掛在距地面2.25米處,若國(guó)旗隨國(guó)歌聲冉冉升起,并在國(guó)歌播放45秒結(jié)束時(shí)到達(dá)旗桿頂端,則國(guó)旗應(yīng)以多少米/秒的速度勻速上升?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,∠B=∠C=90 ,M是BC的中點(diǎn),DM平分∠ADC.
(1)若連接AM,則AM是否平分∠BAD?請(qǐng)你證明你的結(jié)論;
(2)線段DM與AM有怎樣的位置關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CD為AB邊上的高.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著△ABC的三條邊逆時(shí)針走一圈回到A點(diǎn),速度為2cm/s,設(shè)運(yùn)動(dòng)時(shí)間為t s.
(1)求CD的長(zhǎng);
(2)t為何值時(shí),△ACP是等腰三角形?
(3)若M為BC上一動(dòng)點(diǎn),N為AB上一動(dòng)點(diǎn),是否存在M,N使得AM+MN 的值最?如果有,請(qǐng)直接寫(xiě)出最小值,如果沒(méi)有,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=12厘米, BC=8厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng);當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為下列哪個(gè)值時(shí),能夠在某一時(shí)刻使△BPD與△CQP全等( )
A. 2或3厘米/秒 B. 4厘米/秒 C. 3厘米/秒 D. 4或6厘米/秒
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com