【題目】如圖所示,在MNP中,∠P60°,MNNP,MQPN,垂足為Q,延長MN至點(diǎn)G,取NGNQ,若MNP的周長為12MQa,則MGQ周長是 (  )

A.8+2aB.8aC.6+aD.6+2a

【答案】D

【解析】

MNP中,∠P=60°MN=NP,證明△MNP是等邊三角形,再利用MQPN,求得PM、NQ長,再根據(jù)等腰三角形的性質(zhì)求解即可.

解:∵△MNP中,∠P=60°MN=NP
∴△MNP是等邊三角形.
又∵MQPN,垂足為Q
PM=PN=MN=4,NQ=NG=2MQ=a,∠QMN=30°,∠PNM=60°
NG=NQ,
∴∠G=QMN
QG=MQ=a,
∵△MNP的周長為12,
MN=4NG=2,
∴△MGQ周長是6+2a
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過正方形ABCD的頂點(diǎn)DDEAC,交BC的延長線于點(diǎn)E

1)判斷四邊形ACED的形狀,并說明理由;

2)若CE=4,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在ABCD中,對角線AC、BD相交于點(diǎn)O.請找出圖中的一對全等三角形,并給予證明;

(2)規(guī)定:一條弧所對的圓心角的度數(shù)作為這條弧的度數(shù).

①如圖,在⊙O中,弦AC、BD相交于點(diǎn)P,已知弧AB、弧CD分別為65°45°,求∠APB;

②一般地,在⊙O中,弦AC、BD相交于點(diǎn)P,若弧AB、弧CD分別為,求∠APB.

(用m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將掛好彩旗的旗桿垂直插在操場上,旗桿從旗頂?shù)降孛娴母叨葹?/span>320cm,在無風(fēng)的天氣里,彩旗自然下垂,如圖所示,

1)求彩旗下垂時最低處離地面的最小高度h.彩旗完全展平時的尺寸如圖的長方形(單位:cm

2)商店彩旗的標(biāo)價為每面40元,旗桿的標(biāo)價為每根20元,學(xué)校計(jì)劃購買彩旗60面,旗桿50根,由于數(shù)量較多商店決定給予學(xué)校優(yōu)惠,其中彩旗每面優(yōu)惠10%,旗桿每根優(yōu)惠a%,這樣,學(xué)校彩旗又多購買了2a%,旗桿的數(shù)量不變,這樣總共花費(fèi)3542元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某餐廳以、兩種食材,利用不同的搭配方式推出了兩款健康餐,其中,甲產(chǎn)品每份含200、200;乙產(chǎn)品每份含200、100.甲、乙兩種產(chǎn)品每份的成本價分別為、兩種食材的成本價之和,若甲產(chǎn)品每份成本價為16元.店家在核算成本的時候把、兩種食材單價看反了,實(shí)際成本比核算時的成本多688元,如果每天甲銷量的4倍和乙銷量的3倍之和不超過120份,那么餐廳每天實(shí)際成本最多為______元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADAF分別為ABC的中線和高,BEABD的角平分線.

1)若∠BED=40°,∠BAD=25°,求∠BAF的大;

2)若ABC的面積為40,BD=5,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 AB=ACCD⊥ABD,BE⊥ACE,BECD相交于點(diǎn)O

1)求證AD=AE;

2)連接OABC,試判斷直線OABC的關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位農(nóng)民帶上若干千克自產(chǎn)的土豆進(jìn)城出售.為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關(guān)系,如圖,結(jié)合圖象回答下列問題:

1)農(nóng)民自帶的零錢是多少?

2)求出降價前每千克的土豆價格是多少?

3)降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢)是26元,試問他一共帶了多少千克土豆?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,制作某金屬工具先將材料煅燒6分鐘溫度升到800℃,再停止煅燒進(jìn)行鍛造,8分鐘溫度降為600℃;煅燒時溫度y℃)與時間xmin)成一次函數(shù)關(guān)系;鍛造時溫度y℃)與時間xmin)成反比例函數(shù)關(guān)系;該材料初始溫度是32

1)分別求出材料煅燒和鍛造時yx的函數(shù)關(guān)系式;

2)根據(jù)工藝要求,當(dāng)材料溫度低于480℃時,須停止操作,那么鍛造的操作時間有多長?

查看答案和解析>>

同步練習(xí)冊答案