【題目】如圖,邊長為4cm的等邊△ABC中,點P、Q分別是邊AB、BC上的動點(端點除外),點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,連接AQ,CP交于點M,在點P,Q運動的過程中.
(1)求證:△ABQ≌△CAP;
(2)∠QMC的大小是否發(fā)生變化?若無變化,求∠QMC的度數(shù);若有變化,請說明理由;
(3)連接PQ,當點P,Q運動多少秒時,△PBQ是直角三角形?
【答案】
(1)
證明:∵△ABC是等邊三角形,
∴∠ABQ=∠CAP=60°,AB=CA,
∵點P、Q的速度相同,
∴AP=BQ,
在△ABQ和△CAP中,
,
∴△ABQ≌△CAP
(2)
解:∠QMC的大小不發(fā)生變化,
∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∴∠QMC=∠QAC+∠ACP=∠QAC+∠BAQ=60°
(3)
解:設(shè)點P,Q運動x秒時,△PBQ是直角三角形,
則AP=BQ=x,PB=(4﹣x),
當∠PQB=90°時,
∵∠B=60°,
∴BP=2BQ,即4﹣x=2x,
解得,x= ,
當∠PBQ=90°時,
∵∠B=60°,
∴BQ=2BP,即2(4﹣x)=x,
解得,x= ,
∴當點P,Q運動 秒或 秒時,△PBQ是直角三角形
【解析】(1)根據(jù)等邊三角形的性質(zhì)、三角形全等的判定定理證明;(2)根據(jù)全等三角形的性質(zhì)得到∠BAQ=∠ACP,根據(jù)三角形的外角的性質(zhì)解答;(3)分∠PQB=90°和∠PBQ=90°兩種情況,根據(jù)直角三角形的性質(zhì)計算即可.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的個數(shù)有( )個 ① 的算術(shù)平方根是3
②± 是 的平方根
③ =±
④ =0.2
⑤0.1是0.01的一個平方根.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點O、點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是( )
A.60°
B.55°
C.50°
D.45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC三個頂點坐標分別是A(1,3),B(4,1),C(4,4).
(1)請按要求畫圖: ①畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
②畫出△ABC繞著原點O順時針旋轉(zhuǎn)90°后得到的△A2B2C2 .
(2)請寫出直線B1C1與直線B2C2的交點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.
(1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;
(2)將△A1B1C1向左平移3個單位后得到△A2B2C2 , 畫出△A2B2C2 , 并寫出頂點A2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠D=∠C=90°,E是DC的中點,AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是( )
A.62
B.31
C.28
D.25
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB垂直于弦CD,垂足為點E,過點C作⊙O 的切線,交AB的延長線于點P,聯(lián)結(jié)PD.
(1)判斷直線PD與⊙O的位置關(guān)系,并加以證明;
(2)聯(lián)結(jié)CO并延長交⊙O于點F,聯(lián)結(jié)FP交CD于點G,如果CF=10,cos∠APC=,求EG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com