【題目】如圖,點A.F、C.D在同一直線上,點B和點E分別在直線AD的兩側(cè),且

AB=DE,∠A=∠D,AF=DC.

(1)求證:四邊形BCEF是平行四邊形,

(2)若∠ABC=90°,AB=4,BC=3,當(dāng)AF為何值時,四邊形BCEF是菱形.

【答案】(1)證明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF。

∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,

∴△ABC≌DEF(SAS)。∴BC=EF,∠ACB=∠DFE,∴BC∥EF。

∴四邊形BCEF是平行四邊形.

(2)解:連接BE,交CF與點G,

∵四邊形BCEF是平行四邊形,

∴當(dāng)BE⊥CF時,四邊形BCEF是菱形。

∵∠ABC=90°,AB=4,BC=3,

∴AC=。

∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC。

,即!。

∵FG=CG,∴FC=2CG=,

∴AF=AC﹣FC=5﹣

∴當(dāng)AF=時,四邊形BCEF是菱形.

【解析】(1)由AB=DE,∠A=∠D,AF=DC,根據(jù)SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四邊形BCEF是平行四邊形。

(2)由四邊形BCEF是平行四邊形,可得當(dāng)BE⊥CF時,四邊形BCEF是菱形,所以連接BE,交CF與點G,證得△ABC∽△BGC,由相似三角形的對應(yīng)邊成比例,即可求得AF的值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華同學(xué)對圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了拓展探究.

(一)猜測探究

在△ABC中,ABAC,M是平面內(nèi)任意一點,將線段AM繞點A按順時針方向旋轉(zhuǎn)與∠BAC相等的角度,得到線段AN,連接NB

1)如圖1,若M是線段BC上的任意一點,請直接寫出∠NAB與∠MAC的數(shù)量關(guān)系是_______,NBMC的數(shù)量關(guān)系是_______;

2)如圖2,點EAB延長線上點,若M是∠CBE內(nèi)部射線BD上任意一點,連接MC,(1)中結(jié)論是否仍然成立?若成立,請給予證明,若不成立,請說明理由。

(二)拓展應(yīng)用

如圖3,在△A1B1C1中,A1B18,∠A1B1C190°,∠C130°,PB1C1上的任意點,連接A1P,將A1P繞點A1按順時針方向旅轉(zhuǎn)60°,得到線段A1Q,連接B1Q.求線段B1Q長度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ACB=90°,AC=BC,EAC上一點,連接BE

1)如圖1,AB=,BE=5,AE的長;

2)如圖2,D是線段BE延長線上一點過點AAFBD于點F,連接CDCF,當(dāng)AF=DF求證:DC=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為兩正方形ABCD、CEFG和矩形DFHI的位置圖,其中D,A兩點分別在CG、BI上,若AB=3,CE=5,則矩形DFHI的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,ECD上一點,BEACF,連接DF.

(1)證明:∠BAC=∠DAC.

(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題背景)

如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)是,點軸上的一個動點.當(dāng)點軸上移動時,始終保持是等腰直角三角形,且(、按逆時針方向排列);當(dāng)點移動到點時,得到等腰直角三角形(此時點與點重合).

(初步探究)

(1)寫出點的坐標(biāo)______.

(2)軸上移動過程中,當(dāng)?shù)妊苯侨切?/span>的頂點在第四象限時,連接.

求證:;

(深入探究)

(3)當(dāng)點軸上移動時,點也隨之運動.經(jīng)過探究發(fā)現(xiàn),點的橫坐標(biāo)總保持不變,請直接寫出點的橫坐標(biāo):______.

(拓展延伸)

(4)軸上移動過程中,當(dāng)為等腰三角形時,直接寫出此時點的坐標(biāo).

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(k﹣1)x2﹣2kx+k+2=0有兩個不相等的實數(shù)根.

(1)求k的取值范圍;

(2)若x1,x2是一元二次方程的兩個實數(shù)根,且滿足=﹣2,求k的值,并求此時方程的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC 中,點 D 是線段 BC 上一點.作射線 AD ,點 B 關(guān)于射線 AD 的對稱點為 E .連接 EC 并延長,交射線 AD 于點 F .

1)補全圖形;(2)求AFE 的度數(shù);(3)用等式表示線段 AF 、CF EF 之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程(a+1)x2﹣ax+a2﹣a﹣2=0的一個根與方程(a+1)x2+ax﹣a2+a+2=0的一個根互為相反數(shù),那么(a+1)x2+ax﹣a2+a+2=0的根是(  )

A. 0,﹣ B. 0, C. ﹣1,2 D. 1,﹣2

查看答案和解析>>

同步練習(xí)冊答案