【題目】如圖,將ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)120°得到AB'C'(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B',點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C'),連接BB',若AC'BB',則∠C'AB'的度數(shù)為(

A.20°B.30°C.40°D.50°

【答案】B

【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BAB′=CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質(zhì)易得∠AB′B=30°,再根據(jù)平行線的性質(zhì)即可得∠C′AB′=AB′B=30°

解:∵將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)l20°得到△AB′C′,
∴∠BAB′=CAC′=120°,AB=AB′,
∴∠AB′B=180°-120°=30°,
AC′BB′,
∴∠C′AB′=AB′B=30°,
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】能判定四邊形是平行四邊形的是(

A.ABCDB. ABCD,

C.D.,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形 ABCD中,AB 6cm ,BC 12cm B 30,點(diǎn)P BC 上由點(diǎn)B向點(diǎn)C 出發(fā),速度為每秒2cm;點(diǎn)Q 在邊AD上,同時(shí)由點(diǎn) D 向點(diǎn) A 運(yùn)動(dòng),速度為每秒1cm ,當(dāng)點(diǎn) P 運(yùn)動(dòng)到點(diǎn)C時(shí),P Q 同時(shí)停止運(yùn)動(dòng),連接 PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)當(dāng)t為何值時(shí)四邊形 ABPQ 為平行四邊形?

2)當(dāng)t為何值時(shí),四邊形 ABPQ 的面積是四邊形 ABCD 的面積的四分之三?

3)連接 AP ,是否存在某一時(shí)刻t,使ABP 為等腰三角形?并求出此刻t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y1=x+mx軸、y軸分別交于點(diǎn)A、B,與雙曲線x<0)分別交于點(diǎn)C-1,2、Da1).

1)分別求出直線及雙曲線的解析式;

2)利用圖象直接寫出,當(dāng)x在什么范圍內(nèi)取值時(shí),y1>y2

(3)請(qǐng)把直線y1<y2時(shí)的部分用黑色筆描粗一些.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)BD上,BE=DF.

(1)求證:AE=CF;

(2)若AB=6,∠COD=60°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圖形中每一小格正方形的邊長(zhǎng)為1,已知△ABC

1AC的長(zhǎng)等于   .(結(jié)果保留根號(hào)

2)將△ABC向右平移2個(gè)單位得到△A′B′C′,A點(diǎn)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是   

3)畫出將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得到△A1B1C1,并寫出A點(diǎn)對(duì)應(yīng)點(diǎn)A1的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)D、E分別是邊BC、AC的中點(diǎn),過(guò)點(diǎn)AAFBCDE的延長(zhǎng)線于F點(diǎn),連接AD、CF

1)求證:四邊形ADCF是平行四邊形;

2)當(dāng)ABC滿足什么條件時(shí),四邊形ADCF是正方形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知在ABC中,AB=AC,BAC=90°,直角EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE、PF分別交AB和AC于點(diǎn)E、F,給出以下五個(gè)結(jié)論正確的個(gè)數(shù)有( 。

①AE=CF②APE=CPF ③BEP≌△AFP④EPF是等腰直角三角形當(dāng)EPF在ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),S四邊形AEPF=SABC

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分)如圖,管中放置著三根同樣的繩子,

)小明從這三根繩子中隨機(jī)選一根,恰好選中繩子的概率是__________

)小明先從左端 , 三個(gè)繩頭中隨機(jī)選兩個(gè)打一個(gè)結(jié),再?gòu)挠叶?/span>, , 三個(gè)繩頭中隨機(jī)選兩個(gè)打一個(gè)結(jié),求這三根繩子能連結(jié)成一根長(zhǎng)繩的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案