精英家教網 > 初中數學 > 題目詳情

【題目】某農戶要改造部分農田種植蔬菜.經調查,平均每畝改造費用是900元,添加輔助設備費用(元)與改造面積(畝)的平方成正比,比例系數為18,以上兩項費用三年內不需再投入;每畝種植蔬菜還需種子、人工費用600元,這項費用每年均需再投入,除上述費用外,沒有其他費用,設改造畝,每畝蔬菜年銷售額為元.

1)設改造當年收益為元,用含,的式子表示;

2)按前三年計算,若,是否改造面積越大收益越大?改造面積為多少時,可以得到最大收益?

3)若,按前三年計算,能確保改造的面積越大收益也越大,求的取值范圍.

注:收益=銷售額-(改造費+輔助設備費+種子、人工費).

【答案】1;(2)不是,50;(3

【解析】

解:(1;

2)按前3年計算,當時,

時,收益隨改造面積增大而增大,當時,收益隨改造面積增大而減小,

∴不是改造面積越大收益越大,當改造面積為50畝時,收益最大;

3)按前三年計算,則,

該拋物線開口向下,當保證在時,的增大而增大,

則對稱軸,解得,

∴當時,能確保改造的面積越大收益也越大.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某小區(qū)為了美化環(huán)境,計劃分兩次購進A,B兩種花,第一次分別購進A,B兩種花30棵和15棵,共花費675元;第二次以同樣的單價分別購進A、B兩種花12棵和5棵,第二次花費265元.

(1)求A、B兩種花的單價分別是多少元?

(2)若購買A、B兩種花共31棵,且B種花的數量不多于A種花的數量的2倍,請你給出一種費用最省的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線分別與x軸,y軸交于點A,B兩點,點COB的中點,拋物線經過A,C兩點.

1)求拋物線的函數表達式;

2)點D是直線AB下方的拋物線上的一點,且的面積為,求點D的坐標;

3)點P為拋物線上一點,若是以AB為直角邊的直角三角形,求點P到拋物線的對稱軸的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知一次函數y1=x+ax軸、y軸分別交于點D、C兩點和反比例函數交于AB兩點,且點A的坐標是(1,3),點B的坐標是(3,m)

1)求ak,m的值;

2)求C、D兩點的坐標,并求AOB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司計劃投入50萬元,開發(fā)并生產甲乙兩種產品,根據市場調查預計甲產品的年獲利y1(萬元)與投入資金x(萬元)成正比例,乙產品的年獲利y2(萬元)與投入資金x(萬元)的平方成正比例,設該公司投入乙產品x(萬元),兩種產品的年總獲利為y萬元(x≥0),得到了表中的數據.

x(萬元)

20

30

y(萬元)

10

13

(1)求yx的函數關系式;

(2)該公司至少可獲得多少利潤?請你利用所學的數學知識對該公司投入資金的分配提出合理化建

議,使他能獲得最大利潤,并求出最大利潤是多少?

(3)若從年總利潤扣除投入乙產品資金的a倍(a≤1)后,剩余利潤隨x增大而減小,求a的取值

范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】凈揚水凈化有限公司用160萬元,作為新產品的研發(fā)費用,成功研制出了一種市場急需的小型水凈化產品,已于當年投入生產并進行銷售.已知生產這種小型水凈化產品的成本為4/件,在銷售過程中發(fā)現:每年的年銷售量(萬件)與銷售價格x(元/件)的關系如圖所示,其中AB為反比例函數圖象的一部分,BC為一次函數圖象的一部分.設公司銷售這種水凈化產品的年利潤為z(萬元).(注:若上一年盈利,則盈利不計入下一年的年利潤;若上一年虧損,則虧損計作下一年的成本.)

1)請求出y(萬件)與x(元/件)之間的函數關系式;

2)求出第一年這種水凈化產品的年利潤z(萬元)與x(元/件)之間的函數關系式,并求出第一年年利潤的最大值;

3)假設公司的這種水凈化產品第一年恰好按年利潤z(萬元)取得最大值時進行銷售,現根據第一年的盈虧情況,決定第二年將這種水凈化產品每件的銷售價格x(元)定在8元以上(),當第二年的年利潤不低于103萬元時,請結合年利潤z(萬元)與銷售價格x(元/件)的函數示意圖,求銷售價格x(元/件)的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中,平分,平分相交于點,且,則__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內的垃圾,租用甲、乙兩車運送.若兩車合作,各運12趟才能完成,需支付運費共4800元;若甲、乙兩車單獨運完此堆垃圾,則乙車所運趟數是甲車的2倍;已知乙車每趟運費比甲車少200元.

探究:

1)分別求出甲、乙兩車每趟的運費;

2)若單獨租用甲車運完此堆垃圾,需運多少趟;

發(fā)現:若同時租用甲、乙兩車,則甲車運x趟,乙車運y趟,才能運完此堆垃圾,其中均為正整數.

1)當時,______;當時,______;

2)求yx之間滿足的函數關系式.

決策:在“發(fā)現”的條件下,設總運費為w(元).

1)求wx之間滿足的函數關系式,當x取何值時,w取得最小值;

2)當時,甲車每趟的運費打7折,乙車每趟的運費打9折,當x取何值時,w取得最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以ABC的邊AC為直徑的O恰為ABC的外接圓,ABC的平分線交O于點D,過點D作DEAC交BC的延長線于點E.

(1)求證:DE是O的切線;

(2)若AB=25,BC=,求DE的長.

查看答案和解析>>

同步練習冊答案