【題目】把球放在長(zhǎng)方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長(zhǎng)是( 。
A. 2cm B. 2.5cm C. 3cm D. 4cm
【答案】B
【解析】分析:首先由題意,⊙O與BC相切,記切點(diǎn)為G,作直線OG,分別交AD、劣弧EF于點(diǎn)H、I,再連接OF,易求得FH的長(zhǎng),然后設(shè)求半徑為r,則OH=4-r,然后在Rt△OFH中,r2-(4-r)2=22,解此方程即可求得答案.
詳解:
由題意,⊙O與BC相切,記切點(diǎn)為G,作直線OG,分別交AD、劣弧EF于點(diǎn)H、I,再連接OF,
在矩形ABCD中,AD∥BC,而IG⊥BC,
∴IG⊥AD,
∴在⊙O中,FH=EF=2,
設(shè)求半徑為r,則OH=4-r,
在Rt△OFH中,r2-(4-r)2=22,
解得r=2.5,
∴這個(gè)球的半徑是2.5厘米.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知五邊形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,則五邊形ABCDE的面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E。
(1)①求證圖1中△ADC≌△CEB;②證明DE=AD+BE;
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),請(qǐng)說(shuō)明DE=AD-BE的理由;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問(wèn)DE、AD、BE又具有怎樣的等量關(guān)系?請(qǐng)直接寫出這個(gè)等量關(guān)系(不必說(shuō)明理由)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從一個(gè)等腰三角形紙片的頂角頂點(diǎn)出發(fā),能將其剪成兩個(gè)等腰三角形紙片,則原等腰三角形紙片的頂角等于( )
A.90°B.72°C.108°D.90°或108°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,點(diǎn)A表示小明家,點(diǎn)B表示學(xué)校.小明媽媽騎車帶著小明去學(xué)校,到達(dá)C處時(shí)發(fā)現(xiàn)數(shù)學(xué)書沒(méi)帶,于是媽媽立即騎車原路回家拿書后再追趕小明,同時(shí)小明步行去學(xué)校,到達(dá)學(xué)校后等待媽媽.假設(shè)拿書時(shí)間忽略不計(jì),小明和媽媽在整個(gè)運(yùn)動(dòng)過(guò)程中分別保持勻速.媽媽從C處出發(fā)x分鐘時(shí)離C處的距離為y1米,小明離C處的距離為y2米,如圖②,折線O-D-E-F表示y1與x的函數(shù)圖像;折線O-G-F表示y2與x的函數(shù)圖像.
(1)小明的速度為_________m/min,圖②中a的值為__________.
(2)設(shè)媽媽從C處出發(fā)x分鐘時(shí)媽媽與小明之間的距離為y米.
①寫出小明媽媽在騎車由C處返回到A處的過(guò)程中,y與x的函數(shù)表達(dá)式及x的取值范圍;
②在圖③中畫出整個(gè)過(guò)程中y與x的函數(shù)圖像.(要求標(biāo)出關(guān)鍵點(diǎn)的坐標(biāo))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠DAB=∠CAE,AD=AB,AC=AE.
(1)求證△ABE≌△ADC;
(2)設(shè)BE與CD交于點(diǎn)O,∠DAB=30°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①是一張∠AOB=45°的紙片折疊后的圖形,P、Q分別是邊OA、OB上的點(diǎn),且OP=2 cm.將∠AOB沿PQ折疊,點(diǎn)O落在紙片所在平面內(nèi)的C處.
(1)①當(dāng)PC∥QB時(shí),OQ= cm;
②在OB上找一點(diǎn)Q,使PC⊥QB(尺規(guī)作圖,保留作圖痕跡);
(2)當(dāng)折疊后重疊部分為等腰三角形時(shí),求OQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊中,是邊上一點(diǎn)(不含端點(diǎn) ,),是的外角 的平分線上一點(diǎn),且.
(1)尺規(guī)作圖:在直線的下方,過(guò)點(diǎn)作,作的延長(zhǎng)線,與相交于點(diǎn).
(2)求證:是等邊
(3)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com