【題目】如圖,平行四邊形ABCD中,EAD的中點(diǎn),已知DEF的面積為1,則平行四邊形ABCD的面積為_______

【答案】12

【解析】

由于四邊形ABCD是平行四邊形,那么ADBC,AD=BC,根據(jù)平行線分線段成比例定理的推論可得DEF∽△BCF,再根據(jù)EAD中點(diǎn),易求出相似比,從而可求BCF的面積,再利用BCFDEF是同高的三角形,則兩個三角形面積比等于它們的底之比,從而易求DCF的面積,進(jìn)而可求ABCD的面積.

∵四邊形ABCD是平行四邊形,

ADBCAD=BC,

∴△DEF∽△BCF,

SDEFSBCF=2

又∵EAD中點(diǎn),

DE=AD=BC,

DEBC=DFBF=12,

SDEFSBCF=14,

SBCF=4,

又∵DFBF=12,

SDCF=2

SABCD=2SDCF+SBCF=12

故答案為12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

(1)求此反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓的直徑,點(diǎn)D在半圓弧上,過點(diǎn)DAB的平行線與過點(diǎn)A半圓的切線交于點(diǎn)C,點(diǎn)EAB上,若DE垂直平分BC,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下面的兩位數(shù)18 27,36, 45,54,63,72,81,99都是9的整數(shù)倍,小明發(fā)現(xiàn)這些數(shù)的個位數(shù)字與十位數(shù)字的和也都是9的整數(shù)倍,例如18的的個位數(shù)字8與十位數(shù)字1的和是9.于是小明有了這樣的結(jié)論:個位數(shù)字與十位數(shù)字的和是9的倍數(shù)的兩位數(shù)一定是9的倍數(shù).小明經(jīng)過思考后給出了如下的證明:

設(shè)十位上的數(shù)字為,個位上的數(shù)字為,并且為正整數(shù))

那么這個兩位數(shù)可表示為

∴這個兩位數(shù)是9的倍數(shù)

小明猜想:個位數(shù)字與十位數(shù)字與百位數(shù)字的和是9的倍數(shù)的三位數(shù)也一定是9的倍數(shù).小明的這個猜想的結(jié)論是否正確?若正確模仿小明的證明思路給出證明,若不正確舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)報(bào)名參加校運(yùn)動會,有以下4個項(xiàng)目可供選擇:徑賽項(xiàng)目:100m,200m(分別用A1、A2表示).田賽項(xiàng)目:跳遠(yuǎn),跳高(分用B1,B2表示)

1)該同學(xué)從4個項(xiàng)目中任選一個,恰好是田賽項(xiàng)目的概率為

2)該同學(xué)從4個項(xiàng)目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項(xiàng)目和一個徑賽項(xiàng)目的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅行社推出一條成本價為500元/人的省內(nèi)旅游線路.游客人數(shù)(人/月)與旅游報(bào)價(元/人)之間的關(guān)系為,已知:旅游主管部門規(guī)定該旅游線路報(bào)價在800元/人~1200元/人之間.

(1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報(bào)價的取值范圍;

(2)求經(jīng)營這條旅游線路每月所需要的最低成本;

(3)當(dāng)這條旅游線路的旅游報(bào)價為多少時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,CFAB于點(diǎn)F,過點(diǎn)DDEBC的延長線于點(diǎn)E,且CFDE

1)求證:△BFC≌△CED;

2)若∠B60°,AF5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線和拋物線為正整數(shù)).

1)拋物線軸的交點(diǎn)______,頂點(diǎn)坐標(biāo)______;

2)當(dāng)時,請解答下列問題.

①直接寫出軸的交點(diǎn)______,頂點(diǎn)坐標(biāo)______,請寫出拋物線,的一條相同的圖象性質(zhì)______;

②當(dāng)直線,相交共有4個交點(diǎn)時,求的取值范圍.

3)若直線)與拋物線,拋物線為正整數(shù))共有4個交點(diǎn),從左至右依次標(biāo)記為點(diǎn),點(diǎn),點(diǎn),點(diǎn),當(dāng)時,求出,之間滿足的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E,F分別在矩形ABCD的邊AB,BC上,連接EF,將BEF沿直線EF翻折得到HEFAB8,BC6AEEB31

1)如圖1,當(dāng)∠BEF45°時,EH的延長線交DC于點(diǎn)M,求HM的長;

2)如圖2,當(dāng)FH的延長線經(jīng)過點(diǎn)D時,求tanFEH的值;

3)如圖3,連接AH,HC,當(dāng)點(diǎn)F在線段BC上運(yùn)動時,試探究四邊形AHCD的面積是否存在最小值?若存在,求出四邊形AHCD的面積的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案