【題目】如圖,在菱形中,,,分別為,的中點(diǎn),連接、、,則圖中與全等的三角形(除外)有( ).

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

先由菱形的性質(zhì)得出ADBC,由平行線的性質(zhì)得到∠BAD+B=180°,又∠BAD=2B,求出∠B=60°,則∠D=B=60°,△ABC與△ACD是全等的等邊三角形,再根據(jù)E,F分別為BC,CD的中點(diǎn),即可求出與△ABE全等的三角形(△ABE除外)有△ACE,△ACF,△ADF

解:∵四邊形ABCD是菱形,

AB=BC=CD=DA,∠D=BADBC,

∴∠BAD+B=180°,

∵∠BAD=2B,

∴∠B=60°,

∴∠D=B=60°,

∴△ABC與△ACD是全等的等邊三角形,

E,F分別為BCCD的中點(diǎn),

,

在△ABE與△ACE中,

∴△ABE≌△ACESAS;

在△ABE與△ADF中,

∴△ABE≌△ADFSAS;

在△ABE與△ACF中,

∴△ABE≌△ACFSAS;

∴圖中與△ABE全等的三角形(△ABE除外)有3個(gè),

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,以點(diǎn)為圓心,以為半徑作優(yōu)弧,交于點(diǎn),交于點(diǎn).點(diǎn)在優(yōu)弧上從點(diǎn)開始移動(dòng),到達(dá)點(diǎn)時(shí)停止,連接.

1)當(dāng)時(shí),判斷與優(yōu)弧的位置關(guān)系,并加以證明;

2)當(dāng)時(shí),求點(diǎn)在優(yōu)弧上移動(dòng)的路線長(zhǎng)及線段的長(zhǎng).

3)連接,設(shè)的面積為,直接寫出的取值范圍.

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)的圖象與函數(shù)的圖象交于、兩點(diǎn),連接并延長(zhǎng)交函數(shù)的圖象于點(diǎn),連接,若的面積為12,則的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)小組在郊外的水平空地上對(duì)無人機(jī)進(jìn)行測(cè)高實(shí)驗(yàn).如圖,兩臺(tái)測(cè)角儀分別放在A、B位置,且離地面高均為1米(即米),兩臺(tái)測(cè)角儀相距50米(即AB=50米).在某一時(shí)刻無人機(jī)位于點(diǎn)C (點(diǎn)C與點(diǎn)A、B在同一平面內(nèi)),A處測(cè)得其仰角為,B處測(cè)得其仰角為.(參考數(shù)據(jù):,,

1)求該時(shí)刻無人機(jī)的離地高度;(單位:米,結(jié)果保留整數(shù))

2)無人機(jī)沿水平方向向左飛行2秒后到達(dá)點(diǎn)F(點(diǎn)F與點(diǎn)AB、C在同一平面內(nèi)),此時(shí)于A處測(cè)得無人機(jī)的仰角為,求無人機(jī)水平飛行的平均速度.(單位:米/秒,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】漢江是長(zhǎng)江最長(zhǎng)的支流,在歷史上占居重要地位,陜西省境內(nèi)的漢江為漢江上游段.李琳利用熱氣球探測(cè)器測(cè)量漢江某段河寬,如圖,探測(cè)器在A處觀測(cè)到正前方漢江兩岸岸邊的B、C兩點(diǎn),并測(cè)得B、C兩點(diǎn)的俯角分別為45°,30°已知A處離地面的高度為80m,河平面BC與地面在同一水平面上,請(qǐng)你求出漢江該段河寬BC(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點(diǎn),拋物線軸的一個(gè)交點(diǎn)為(點(diǎn)在點(diǎn)的左側(cè)),過點(diǎn)垂直軸交直線于點(diǎn)

1)求拋物線的函數(shù)表達(dá)式;

2)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn)

①求點(diǎn)的坐標(biāo);

②將拋物線向右平移使它經(jīng)過點(diǎn),此時(shí)得到的拋物線記為,求出拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)ykx12+2的圖象與一次函數(shù)ykxk+2的圖象交于AB兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),直線AB分別與x、y軸交于CD兩點(diǎn),其中k0

1)求AB兩點(diǎn)的橫坐標(biāo);

2)若△OAB是以OA為腰的等腰三角形,求k的值;

3)二次函數(shù)圖象的對(duì)稱軸與x軸交于點(diǎn)E,是否存在實(shí)數(shù)k,使得∠ODC2BEC,若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,圓心O在坐標(biāo)原點(diǎn),正方形ABCD的邊長(zhǎng)為2,點(diǎn)AB在第二象限,點(diǎn)C、D在⊙O上,且點(diǎn)D的坐標(biāo)為(02),現(xiàn)將正方形ABCD繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)150°,點(diǎn)B運(yùn)動(dòng)到了⊙O上點(diǎn)B1處,點(diǎn)AD分別運(yùn)動(dòng)到了點(diǎn)A1、D1處,即得到正方形A1B1C1D1(點(diǎn)C1C重合);再將正方形A1B1C1D1繞點(diǎn)B1按逆時(shí)針方向旋轉(zhuǎn)150°,點(diǎn)A1運(yùn)動(dòng)到了⊙O上點(diǎn)A2處,點(diǎn)D1C1分別運(yùn)動(dòng)到了點(diǎn)D2、C2處,即得到正方形A2B2C2D2(點(diǎn)B2B1重合),,按上述方法旋轉(zhuǎn)2020次后,點(diǎn)A2020的坐標(biāo)為( 。

A.02B.2+,﹣1

C.(﹣1,﹣1D.1,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加射擊比賽,10次射擊的成績(jī)?nèi)绫恚?/span>

若小明再射擊2次,分別命中7環(huán)、9環(huán),與前10次相比,小明12次射擊的成績(jī)(  )

A. 平均數(shù)變大,方差不變B. 平均數(shù)不變,方差不變

C. 平均數(shù)不變,方差變大D. 平均數(shù)不變,方差變小

查看答案和解析>>

同步練習(xí)冊(cè)答案