【題目】為了維護(hù)海洋權(quán)益,新組建的國家海洋局加大了在南海的巡邏力度,一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時(shí)發(fā)現(xiàn)一艘不明國籍的船只停在C處海域.如圖所示,AB=60( )海里,在B處測(cè)得C在北偏東45°的方向上,A處測(cè)得C在北偏西30°的方向上,在海岸線AB上有一燈塔D,測(cè)得AD=120( )海里.

(1)分別求出A與C及B與C的距離AC、BC(結(jié)果保留根號(hào))
(2)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,圖中有無觸礁的危險(xiǎn)?
(參考數(shù)據(jù): =1.41, =1.73, =2.45)

【答案】
(1)

解:如圖所示,過點(diǎn)C作CE⊥AB于點(diǎn)E,

可得∠CBD=45°,∠CAD=60°,

設(shè)CE=x,

在Rt△CBE中,BE=CE=x,

在Rt△CAE中,AE= x,

∵AB=60( )海里,

∴x+ x=60( ),

解得:x=60 ,

則AC= x=120 ,

BC= x=120 ,

答:A與C的距離為120 海里,B與C的距離為120 海里


(2)

解:如圖所示,過點(diǎn)D作DF⊥AC于點(diǎn)F,

在△ADF中,

∵AD=120( ),∠CAD=60°,

∴DF=ADsin60°=180 ﹣60 ≈106.8>100,

故海監(jiān)船沿AC前往C處盤查,無觸礁的危險(xiǎn).


【解析】(1)如圖所示,過點(diǎn)C作CE⊥AB于點(diǎn)E,可求得∠CBD=45°,∠CAD=60°,設(shè)CE=x,在Rt△CBE與Rt△CAE中,分別表示出BE、AE的長(zhǎng)度,然后根據(jù)AB=60( )海里,代入BE、AE的式子,求出x的值,繼而可求出AC、BC的長(zhǎng)度;(2)如圖所示,過點(diǎn)D作DF⊥AC于點(diǎn)F,在△ADF中,根據(jù)AD的值,利用三角函數(shù)的知識(shí)求出DF的長(zhǎng)度,然后與100比較,進(jìn)行判斷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距900km,一列快車從甲地開往乙地,一列慢車從乙地開往甲地,兩車同時(shí)出發(fā),行了4小時(shí)后兩車相遇,快車的速度是慢車速度的2倍.

(1)請(qǐng)求出慢車與快車的速度?

(2)兩車出發(fā)后多長(zhǎng)時(shí)間,它們相距225千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種新運(yùn)算:對(duì)于任意有理數(shù)ab

規(guī)定a 如:1.

(1)求(﹣2)5的值;

(2)若 3=8,求a的值;

(3)若m=2x, n=(-1-x3(其中x為有理數(shù)),試比較大小m n(填“>”、“<”“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。

現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個(gè)盒子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)AB,C,其中AB=2BC=1,如圖所示.設(shè)點(diǎn)AB,C所對(duì)應(yīng)數(shù)的和是p

1)若以B為原點(diǎn),寫出點(diǎn)A,C所對(duì)應(yīng)的數(shù),并計(jì)算p的值;若以C為原點(diǎn),p又是多少?

2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,求p

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣ x2+bx+4與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,若已知B點(diǎn)的坐標(biāo)為B(8,0)

(1)求拋物線的解析式及其對(duì)稱軸.
(2)連接AC、BC,試判斷△AOC與△COB是否相似?并說明理由.
(3)M為拋物線上BC之間的一點(diǎn),N為線段BC上的一點(diǎn),若MN∥y軸,求MN的最大值;
(4)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰三角形,∠C=90°,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE,DF,EF.在此運(yùn)動(dòng)變化過程中,有下列結(jié)論:
①DE=DF;
②∠EDF=90°;
③四邊形CEDF不可能為正方形;
④四邊形CEDF的面積保持不變.
一定成立的結(jié)論有(把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△BCE中,點(diǎn)A是邊BE上一點(diǎn),以AB為直徑的⊙O與CE相切于點(diǎn)D,AD∥OC,點(diǎn)F為OC與⊙O的交點(diǎn),連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長(zhǎng)的最大值與最小值的和是(
A.6
B.2 +1
C.9
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案