【題目】已知,關(guān)于x的二次函數(shù)y=ax2﹣2ax(a>0)的頂點為C,與x軸交于點O、A,關(guān)于x的一次函數(shù)y=﹣ax(a>0).
(1)試說明點C在一次函數(shù)的圖象上;
(2)若兩個點(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請求出k的值;如果不存在,請說明理由;
(3)若點E是二次函數(shù)圖象上一動點,E點的橫坐標是n,且﹣1≤n≤1,過點E作y軸的平行線,與一次函數(shù)圖象交于點F,當0<a≤2時,求線段EF的最大值.
【答案】(1)見解析;(2)存在.整數(shù)k的值為±4.(3)EF的最大值是4.
【解析】
(1)先求出二次函數(shù)y=ax2﹣2ax=a(x﹣1)2﹣a頂點C(1,﹣a),當x=1時,一次函數(shù)值y=﹣a所以點C在一次函數(shù)y=﹣ax的圖象上;
(2)存在.將點(k,y1)、(k+2,y2)(k≠0,±2)代入二次函數(shù)解析式,用a、k表示出y1、y2,因為滿足,把y1、y2代入整理可得關(guān)于k的方程,解方程檢驗即可求得k的值.
(3)分兩種情況討論:①當﹣1≤n≤0時,EF=yE﹣yF=an2﹣2an﹣(﹣an)=②當0<n≤1時,EF=yF﹣yE=﹣an﹣(an2﹣2an)=
(1)∵二次函數(shù)y=ax2﹣2ax=a(x﹣1)2﹣a,
∴頂點C(1,﹣a),
∵當x=1時,一次函數(shù)值y=﹣a
∴點C在一次函數(shù)y=﹣ax的圖象上;
(2)存在.
∵點(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,
∴y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),
∵滿足
∴,
整理,得 ,
∴
∴,
解得k=±4,
經(jīng)檢驗:k=±4是原方程的根,
∴整數(shù)k的值為±4.
(3)∵點E是二次函數(shù)圖象上一動點,
∴E(n,an2﹣2an),
∵EF∥y軸,F在一次函數(shù)圖象上,∴F(n,﹣an).
①當﹣1≤n≤0時,EF=yE﹣yF=an2﹣2an﹣(﹣an)=
∵a>0,
∴當n=﹣1時,EF有最大值,且最大值是2a,
又∵0<a≤2,
∴0<2a≤4,即EF的最大值是4;
②當0<n≤1時,EF=yF﹣yE=﹣an﹣(an2﹣2an)=此時EF的最大值是 ,
又∵0<a≤2,
∴0< ≤ ,即EF的最大值是;
綜上所述,EF的最大值是4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y=圖象上一點,過點A作x軸的平行線交反比例函數(shù)y=﹣的圖象于點B,點C在x軸上,且S△ABC=,則k=( )
A. 6B. ﹣6C. D. ﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為發(fā)展學生的核心素養(yǎng),培養(yǎng)學生的綜合能力,某學校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學校采取隨機抽樣的方法進行問卷調(diào)查每個被調(diào)查的學生必須選擇而且只能選擇其中一門對調(diào)查結(jié)果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖請結(jié)合圖中所給信息解答下列問題:
本次調(diào)查的學生共有______人,在扇形統(tǒng)計圖中,m的值是______.
分別求出參加調(diào)查的學生中選擇繪畫和書法的人數(shù),并將條形統(tǒng)計圖補充完整.
該校共有學生2000人,估計該校約有多少人選修樂器課程?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在中,,點D、E分別是AB、AC的中點,點F在BC延長線上,連接EF,且.
如圖1,求證:四邊形CDEF是平行四邊形;
如圖2,連接AF、BE,在不添加任何輔助線的情況下,請直接寫出圖2中所有與面積相等的三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F.
(1)求證:四邊形ABEF是菱形;
(2)若AE=6,BF=8,平行四邊形ABCD的面積是36,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°.小聰同學利用直尺和圓規(guī)完成了如下作圖:
①分別以點A,B為圓心,以大于AB長為半徑畫弧,兩弧交于點M,N,過點M,N作直線與AB交于點D;
②連接CD,以點D為圓心,以一定長為半徑畫弧,交MN于點E,交CD于點F,以點C為圓心,以同樣定長為半徑畫弧,與CD交于點G,以點G為圓心,以EF長為半徑畫弧與前弧交于點H.作射線CH與AB交于點K,請根據(jù)以上操作,解答下列問題
(1)由尺規(guī)作圖可知:直線MN是線段AB的 線,∠DCK= .
(2)若CD=5,AK=2,求CK的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四條直線l1:y1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,OA1=1,過點A1作A1A2⊥x軸交l1于點A2,再過點A2作A2A3⊥l1,交l2于點A3,再過點A3作A3A4⊥l2交y軸于點A4,……,則點A2020的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學綜合實踐活動中,小明計劃測量城門大樓的高度,在點B處測得樓頂A的仰角為22°,他正對著城樓前進21米到達C處,再登上3米高的樓臺D處,并測得此時樓頂A的仰角為45°.
(1)求城門大樓的高度;
(2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請你求出A,B之間所掛彩旗的長度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形ABC的頂點在⊙O上,點P是劣弧上的一點(端點除外),延長BP至點D,使BD=AP,連結(jié)CD.
(1)若AP過圓心O,如圖①,請你判斷△PDC是什么三角形?并說明理由;
(2)若AP不過圓心O,如圖②,△PDC又是什么三角形?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com