【題目】如圖1、圖2,在圓O中,,將弦AB與弧AB所圍成的弓形包括邊界的陰影部分繞點(diǎn)B順時(shí)針旋轉(zhuǎn),點(diǎn)A的對(duì)應(yīng)點(diǎn)是

點(diǎn)O到線段AB的距離是______;______;點(diǎn)O落在陰影部分包括邊界時(shí),的取值范圍是______;

如圖3,線段B與優(yōu)弧ACB的交點(diǎn)是D,當(dāng)時(shí),說(shuō)明點(diǎn)DAO的延長(zhǎng)線上;

當(dāng)直線與圓O相切時(shí),求的值并求此時(shí)點(diǎn)運(yùn)動(dòng)路徑的長(zhǎng)度.

【答案】(1);120;;(2)見(jiàn)解析;(3);,.

【解析】

利用垂徑定理和特殊角的三角函數(shù)值解答;當(dāng)OB重疊時(shí),取最小值;當(dāng)OB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)至與圓相交時(shí),交點(diǎn)為,來(lái)求的最大值;

連接AD,利用圓周角定理進(jìn)行證明;

利用切線的性質(zhì)求得的值,并利用弧長(zhǎng)公式求得相應(yīng)的點(diǎn)運(yùn)動(dòng)路徑的長(zhǎng)度.

解:如圖1,過(guò)點(diǎn)O于點(diǎn)D,


由垂徑定理知,
,
,

,

如圖2,當(dāng)OB重疊時(shí),;


當(dāng)OB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)至與圓相交,交點(diǎn)為,連接,則,此時(shí)是等邊三角形,
,
的取值范圍是:
故答案是:;120;;
連接AD,,


為直徑,
所以DAO的延長(zhǎng)線上;
當(dāng)相切,

此時(shí)


當(dāng)時(shí),
運(yùn)動(dòng)路徑的長(zhǎng)度
當(dāng)時(shí),
運(yùn)動(dòng)路徑的長(zhǎng)度

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線,將拋物線沿軸翻折,得到拋物線

1)求出拋物線的函數(shù)表達(dá)式;

2)現(xiàn)將拋物線向左平移個(gè)單位長(zhǎng)度,平移后得到的新拋物線的頂點(diǎn)為,與軸的交點(diǎn)從左到右依次為,;將拋物線向右也平移個(gè)單位長(zhǎng)度,平移后得到的新拋物線的頂點(diǎn)為,與軸交點(diǎn)從左到右依次為,.在平移過(guò)程中,是否存在以點(diǎn),為頂點(diǎn)的四邊形是矩形的情形?若存在,請(qǐng)求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)九年級(jí)學(xué)生步行到郊外春游.一班的學(xué)生組成前隊(duì),速度為4km/h ,二班的學(xué)生組成后隊(duì),速度為6km/h .前隊(duì)出發(fā)1h ,后隊(duì)才出發(fā),同時(shí),后隊(duì)派一名聯(lián)絡(luò)員騎自行車在兩隊(duì)之間不間斷地來(lái)回進(jìn)行聯(lián)絡(luò),他騎車的速度為12km/h.若不計(jì)隊(duì)伍的長(zhǎng)度,如圖,折線ABC ,A-B-C 分別表示后隊(duì),聯(lián)絡(luò)員在行進(jìn)過(guò)程中,離前隊(duì)的路程 與后隊(duì)行進(jìn)時(shí)間xh 之間的部分函數(shù)圖象.

1 求線段AB 對(duì)應(yīng)的函數(shù)關(guān)系式;

2 求點(diǎn)E 的坐標(biāo),并說(shuō)明它的實(shí)際意義;

3 聯(lián)絡(luò)員從出發(fā)到他折返后第一次與后隊(duì)相遇的過(guò)程中,當(dāng)x 為何值時(shí),他離前隊(duì)的路程與他離后隊(duì)的路程相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,并完成任務(wù).

三角形的外心

定義:三角形三邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)叫做三角形的外心.

如圖1,直線l1l2,l3分別是邊ABBC,AC的垂直平分線.

求證:直線l1,l2l3相交于一點(diǎn).

證明:如圖2,設(shè)l1l2相交于點(diǎn)O,分別連接OAOB,OC

l1AB的垂直平分線,

OAOB,(依據(jù)1

l2BC的垂直平分線,

OBOC,

OAOC,(依據(jù)2

l3AC的垂直平分線,

∴點(diǎn)Ol3上,(依據(jù)3

∴直線l1,l2l3相交于一點(diǎn).

1)上述證明過(guò)程中的“依據(jù)1”“依據(jù)2”“依據(jù)3”分別指什么?

2)如圖3,直線l1l2分別是AB,AC的垂直平分線,直線l1,l2相交于點(diǎn)O,點(diǎn)O是△ABC的外心,l1BC于點(diǎn)N,l2BC于點(diǎn)N,分別連接AMAN、OA、OBOC.若OA6cm,△OBC的周長(zhǎng)為22cm,求△AMN的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在3×3的正方形網(wǎng)格中,∠1+∠2+∠3+∠4+∠5=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB5,BC8,點(diǎn)PAB上,AP1.將矩形ABCD沿CP折疊,點(diǎn)B落在點(diǎn)B'處.B'P、BC分別與AD交于點(diǎn)E、F,則EF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】換個(gè)角度看問(wèn)題.

(原題重現(xiàn))

一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為xh),兩車之間的距離為ykm),圖中的折線表示yx之間的函數(shù)關(guān)系.

……

若第二列快車也從甲地出發(fā)駛往乙地,速度與第一列快車相同.在第一列快車與慢車相遇30分鐘后,第二列快車與慢車相遇.求第二列快車比第一列快車晚出發(fā)多少小時(shí)?

(問(wèn)題再研)

若設(shè)慢車行駛的時(shí)間為xh),慢車與甲地的距離為s1km),第一列快車與甲地的距離為s2km),第二列快車與甲地的距離為s3km),根據(jù)原題中所給信息解決下列問(wèn)題:

1)在同一直角坐標(biāo)系中,分別畫出s1、s2x之間的函數(shù)圖象;

2)求s3x之間的函數(shù)表達(dá)式;

3)求原題的答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A的坐標(biāo)是(1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作O,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過(guò)A、B、C三點(diǎn)作拋物線.

(1)求拋物線的解析式;

(2)點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),BCE的平分線CD交O于點(diǎn)D,連結(jié)BD,求直線BD的解析式;

(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得PDB=CBD?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸,軸分別交于點(diǎn),B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為.

(1)求反比例函數(shù)的表達(dá)式;

(2)設(shè)直線 軸,軸分別交于點(diǎn)C,D,,直接寫出的值 .

查看答案和解析>>

同步練習(xí)冊(cè)答案