【題目】如圖,將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的一點(diǎn)H重合(H不與端點(diǎn)C,D重合),折痕交AD于點(diǎn)AB E,交BC于點(diǎn)F,邊AB折疊后與邊BC交于點(diǎn)G,設(shè)正方形ABCD的周長(zhǎng)為m,的周長(zhǎng)為n,則的值為( )
A.B.C.D.隨H點(diǎn)位置的變化而變化
【答案】B
【解析】
設(shè)CH=x,DE=y,則DH=-x,EH=-y,然后利用正方形的性質(zhì)和折疊可以證明△DEH∽△CHG,利用相似三角形的對(duì)應(yīng)邊成比例可以把CG,HG分別用x,y分別表示,△CHG的周長(zhǎng)也用x,y表示,然后在Rt△DEH中根據(jù)勾股定理可以得到x-x2=y,進(jìn)而求出△CHG的周長(zhǎng).
解:設(shè)CH=x,DE=y,則DH=-x,EH=-y,
∵∠EHG=90°,
∴∠DHE+∠CHG=90°.
∵∠DHE+∠DEH=90°,
∴∠DEH=∠CHG,
又∵∠D=∠C=90°,△DEH∽△CHG,
∴,即,
∴CG=,HG=,
△CHG的周長(zhǎng)為n=CH+CG+HG=,
在Rt△DEH中,DH2+DE2=EH2
即(-x)2+y2=(-y)2
整理得-x2=,
∴n=CH+HG+CG=,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1.在Rt△ABC中,∠C=90°,AC=BC,AP、BP分別平分∠CAB、∠CBA,過(guò)點(diǎn)P作DE∥AB交AC于點(diǎn)D,交BC于點(diǎn)E.求證:①點(diǎn)P是線段DE的中點(diǎn);②求證:BP2=BE·BA;
(2)如圖2.在Rt△ABC中,∠C=90°,AB=13,BC=12,BP平分∠ABC,過(guò)點(diǎn)P作DE∥AB交AC于點(diǎn)D,交BC于點(diǎn)E,若點(diǎn)P為線段DE的中點(diǎn),求AD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)為直線上一點(diǎn),點(diǎn)為延長(zhǎng)線上一點(diǎn),且,連結(jié)、、.
(1)求證:;
(2)若,求的度數(shù).
(3)若點(diǎn)是的外心,當(dāng)點(diǎn)在直線的一個(gè)位置運(yùn)動(dòng)到另一個(gè)位置時(shí),點(diǎn)恰好在的內(nèi)部,請(qǐng)直接寫(xiě)出點(diǎn)走過(guò)的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)若這種冰箱的售價(jià)降低50元,每天的利潤(rùn)是 元;
(2)商場(chǎng)要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到更多的實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí)利潤(rùn)最高,并求出最高利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=的圖象在第二象限內(nèi)交于點(diǎn)A,過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,OB=1.
(1)求該反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P是該反比例函數(shù)圖象上一點(diǎn),且△PAB的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn)(點(diǎn)在軸的正半軸上),與軸交于點(diǎn),矩形的一條邊在線段上,頂點(diǎn),分別在線段,上.
求點(diǎn),,的坐標(biāo);
若點(diǎn)的坐標(biāo)為,矩形的面積為,求關(guān)于的函數(shù)表達(dá)式,并指出的取值范圍;
當(dāng)矩形的面積取最大值時(shí),
①求直線的解析式;
②在射線上取一點(diǎn),使,若點(diǎn)恰好落在該拋物線上,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為某三岔路口交通環(huán)島的簡(jiǎn)化模型,在某高峰時(shí)段,單位時(shí)間進(jìn)出口,,的機(jī)動(dòng)車輛數(shù)如圖所示,圖中,,分別表示該時(shí)段單位時(shí)間通過(guò)路段,,的機(jī)動(dòng)車輛數(shù)(假設(shè):?jiǎn)挝粫r(shí)間內(nèi),在上述路段中,同一路段上駛?cè)肱c駛出的車輛數(shù)相等).
(1)若,__________.
(2)與的等量關(guān)系為__________.
(3),,的大小關(guān)系為__________.(用>連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,池塘邊一棵垂直于水面BM的筆直大樹(shù)AB在點(diǎn)C處折斷,AC部分倒下,點(diǎn)A與水面上的點(diǎn)E重合,部分沉入水中后,點(diǎn)A與水中的點(diǎn)F重合,CF交水面于點(diǎn)D,DF=2m,∠CEB=30°,∠CDB=45°,求CB部分的高度.(精確到0.1m.參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠B=90°,AB=BC=12cm,點(diǎn)D從點(diǎn)A出發(fā)沿邊AB以2cm/s的速度向點(diǎn)B移動(dòng),移動(dòng)過(guò)程中始終保持DE∥BC,DF∥AC(點(diǎn)E、F分別在AC、BC上).設(shè)點(diǎn)D移動(dòng)的時(shí)間為t秒.
(1)試判斷四邊形DFCE的形狀,并說(shuō)明理由;
(2)當(dāng)t為何值時(shí),四邊形DFCE的面積等于20cm2?
(3)如圖2,以點(diǎn)F為圓心,FC的長(zhǎng)為半徑作⊙F,在運(yùn)動(dòng)過(guò)程中,當(dāng)⊙F與四邊形DFCE只有1個(gè)公共點(diǎn)時(shí),請(qǐng)直接寫(xiě)出t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com