【題目】已知,正方形,,拋物線為常數(shù)),頂點為

1)拋物線經(jīng)過定點坐標是___ __,頂點的坐標(的代數(shù)式表示)____ _

2)若拋物線(為常數(shù))與正方形的邊有交點,則的取值范圍是___ _

3)若時,求的值.

【答案】1,;(2;(3

【解析】

1)判斷函數(shù)圖像過定點,可以分析代入x的值使得含m的同類項合并后系數(shù)為0;

2)由(1)中的m表示的頂點坐標,可以得到m變化時,拋物線頂點在上運動,分析該函數(shù)圖像和正方形ABCD的頂點位置關系即可解答;

3)需要分類討論,由已知點M在過點B且與AB夾角為45°的直線與拋物線在的交點上,可解決問題.

:

時,

拋物線經(jīng)過定點坐標是

拋物線的解析式為,

頂點的對稱軸為直線

時,

故答案為: ;

,

,帶入=

整理得

即拋物線的頂點在拋物線上運動.其對稱軸為直線,

當拋物線頂點直線右側時即時,

拋物線與正方形無交點.

時,觀察拋物線的頂點所在拋物線恰好過點

,此時

當拋物線過點

拋物線為常數(shù))與正方形的邊有交點時

的范圍為:

拋物線頂點在拋物線上運動

當點在線段上方時,

過點且使的直線解析式為

聯(lián)立方程

得交點橫坐標的(舍去)

當點在線段下方時

過點且使的直線解析式為

聯(lián)立方程

得交點橫坐標的(舍去)

的值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線yax2+bx+3與坐標軸分別交于點AB(﹣3,0),C1,0),點P是線段AB上方拋物線上的一個動點.

1)求拋物線解析式;

2)當點P運動到什么位置時,△PAB的面積最大?

3)過點Px軸的垂線,交線段AB于點D,再過點PPEx軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三點,其中t>0,函數(shù)的圖象分別與線段BC,AC交于點P,Q.若SPAB-SPQB=t,則t的值為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】⊙O中,AB為直徑,C⊙O上一點.

(1)如圖1,過點C⊙O的切線,與AB延長線相交于點P,若∠CAB=27°,求∠P的度數(shù);

(2)如圖2,D為弧AB上一點,OD⊥AC,垂足為E,連接DC并延長,與AB的延長線交于點P,若∠CAB=10°,求∠P的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.

1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應漲價多少元?

2)若該商場單純從經(jīng)濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,二次函數(shù)(m,n為常數(shù)且m≠0)

(1)若n=0,請判斷該函數(shù)的圖像與x軸的交點個數(shù),并說明理由;

(2)若點A(n+5,n)在該函數(shù)圖像上,試探索m,n滿足的條件;

(3)若點(2,p),(3,q),(4,r)均在該函數(shù)圖像上,且p<q<r,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園安全越來越受到人們的關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:

1)接受問卷調查的學生共有______人,條形統(tǒng)計圖中m的值為______

2)扇形統(tǒng)計圖中了解很少部分所對應扇形的圓心角的度數(shù)為______;

3)若該中學共有學生1800人,根據(jù)上述調查結果,可以估計出該學校學生中對校園安全知識達到非常了解基本了解程度的總人數(shù)為______人;

4)若從對校園安全知識達到非常了解程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,甲、乙兩人分別從兩地出發(fā),相向而行,已知甲先出發(fā)4分鐘后,乙才出發(fā),他們兩人在之間的地相遇,相遇后,甲立即返回地,乙繼續(xù)向地前行.甲到達地時停止行走,乙到達地是也停止行走,在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發(fā)的時間(分鐘)之間的關系如圖所示,則下列結論錯誤的是(

A.兩地相距2480B.甲的速度是60/分鐘,乙的速度是80/分鐘

C.乙出發(fā)17分鐘后,兩人在地相遇D.乙到達地時,甲與地相距的路程是300米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+4的圖象與x軸相交于點A,與反比例函數(shù)y= x>0的圖象相交于點B16).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)設點Px軸上一點,若SAPB=18,直接寫出點P的坐標.

查看答案和解析>>

同步練習冊答案