【題目】添加一項(xiàng),能使多項(xiàng)式9x2+1構(gòu)成完全平方式的是( )
A.9x
B.﹣9x
C.9x2
D.﹣6x

【答案】D
【解析】解:添加一項(xiàng),能使多項(xiàng)式9x2+1構(gòu)成完全平方式的是﹣6x,
故選D
【考點(diǎn)精析】掌握完全平方公式是解答本題的根本,需要知道首平方又末平方,二倍首末在中央.和的平方加再加,先減后加差平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)正多邊形的一個(gè)外角是36°,那么該正多邊形的邊數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)任意一個(gè)三位數(shù)n,如果n滿足各個(gè)數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個(gè)數(shù)為“相異數(shù)”,將一個(gè)“相異數(shù)”任意兩個(gè)數(shù)位上的數(shù)字對(duì)調(diào)后可以得到三個(gè)不同的新三位數(shù),把這三個(gè)新三位數(shù)的和與111的商記為F(n).例如n=123,對(duì)調(diào)百位與十位上的數(shù)字得到213,對(duì)調(diào)百位與個(gè)位上的數(shù)字得到321,對(duì)調(diào)十位與個(gè)位上的數(shù)字得到132,這三個(gè)新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.

(1)計(jì)算:F(243),F(xiàn)(617);

(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k=,當(dāng)F(s)+F(t)=18時(shí),求k的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=30°,點(diǎn)A1 , A2 , A3 , …在射線ON上,點(diǎn)B1 , B2 , B3 , …在射線OM上,△A1B1A2 , △A2B2A3 , △A3B3A4 , …均為等邊三角形,若OA1=2,則△A5B5A6的邊長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ACB=90°,AC=BC,點(diǎn)EAC上一點(diǎn),連接BE

1)如圖1,AB=,BE=5,AE的長(zhǎng);

2)如圖2,點(diǎn)D是線段BE延長(zhǎng)線上一點(diǎn),過點(diǎn)AAFBD于點(diǎn)F,連接CD、CF,當(dāng)AF=DF時(shí),求證:DC=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺(tái)的“中國(guó)詩(shī)詞大賽”節(jié)目文化品位高,內(nèi)容豐富某校初二年級(jí)模擬開展“中國(guó)詩(shī)詞大賽”比賽,對(duì)全年級(jí)同學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級(jí)并根據(jù)成績(jī)繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問題

1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對(duì)應(yīng)的扇形的圓心角為 ,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.

2)此次比賽有四名同學(xué)活動(dòng)滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國(guó)詩(shī)詞大賽”比賽請(qǐng)用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商店將某種商品按進(jìn)貨價(jià)提高100%后,又以6折優(yōu)惠售出,售價(jià)為60元,則這種商品的進(jìn)貨價(jià)是( )
A.120元
B.100元
C.72元
D.50元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解ax2-9a=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF;

(1)求證:Rt△ABE≌Rt△CBF;
(2)求證:AB=CE+BF;
(3)若∠CAE=30°,求∠ACF度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案