精英家教網 > 初中數學 > 題目詳情

【題目】某學校要從甲乙兩名射擊運動員中挑選一人參加全市比賽,在選拔賽中,每人進行了5次射擊,甲的成績(環(huán))為:9.710,9.69.89.9;乙的成績的平均數為9.8,方差為0.032

1)甲的射擊成績的平均數和方差分別是多少?

2)據估計,如果成績的平均數達到9.8環(huán)就可能奪得金牌,為了奪得金牌,應選誰參加比賽?

【答案】19.8,0.02;(2)應選甲參加比賽.

【解析】

1)根據平均數和方差的定義列式計算可得;

2)根據方差的意義解答即可.

1×(9.7+10+9.6+9.8+9.9)=9.8(環(huán)),

×[(9.79.82+(109.82+(9.69.82+(9.89.82+(9.99.82]=0.02(環(huán)2);

2)∵甲、乙的平均成績均為9.8環(huán),而0.020.32,

所以甲的成績更加穩(wěn)定一些,

則為了奪得金牌,應選甲參加比賽.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖6,在平面直角坐標系中,一次函數=+1的圖象交軸于點D,與反比例函數=的圖象在第一象限相交于點A.過點A分別作軸的垂線,垂足為點BC.

(1)點D的坐標為 ;

(2)當AB=4AC時,求值;

(3)當四邊形OBAC是正方形時,直接寫出四邊形ABOD與△ACD面積的比.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市水果批發(fā)部門欲將 A 市的一批水果運往本市銷售,有火車和汽車兩種運輸方式,運輸過程中的損耗均為 200 / 時.其它主要參考數據如下:

運輸工具

途中平均速度(千米/ 時)

運費(元/ 千米)

裝卸費用(元)

火車

100

15

2000

汽車

80

20

900

運輸過程中,火車因多次臨時停車,全程在路上耽誤 2 小時 45 分鐘,火車的總支出費用與汽車的總支出費用相同,請問某市與本地的路程是多少千米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知在平面直角坐標系中,拋物線x軸相交于點A,B,與y軸相交于點C. 已知A,C兩點的坐標分別為A(-4,0), C(0,4).

(1)求拋物線的表達式;

(2)如果點P,Q在拋物線上(P點在對稱軸左邊),且PQAO,PQ=2AO,求PQ的坐標;

(3)動點M在直線y=x+4上,且ABCCOM相似,求點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】圖為放置在水平桌面上的臺燈的平面示意圖,可伸縮式燈臂AO長為40 cm,與水平面所形成的夾角∠OAM恒為75°(不受燈臂伸縮的影響).由光源0射出的光線沿燈罩形成光線OC,OB,與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°.

(1)求該臺燈照亮桌面的寬度BC.(不考慮其他因素,結果精確到1 cm,參考數據:sin75°≈0.97,cos75°≈0.26, ≈1.73)

(2)若燈臂最多可伸長至60 cm,不調整燈罩的角度,能否讓臺燈照亮桌面85 cm的寬度?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,OABCAC的中點,ADBCBO的延長線于點D,連接DC,DB平分∠ADC,作DEBC,垂足為E

1)求證:四邊形ABCD為菱形;

2)若BD8,AC6,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】勾股定理是幾何學中的明珠,充滿著魅力,千百年來,人們對它趨之若鶩,其中有著名的數學家,也有業(yè)余數學愛好者,向常春在1994年構造發(fā)現了一個新的證法:把兩個全等的直角三角形如圖1放置,其三邊長分別為a、b、c,顯然∠DAB=∠B90°ACDE

1)請用ab、c分別表示出梯形ABCD、四邊形AECDEBC的面積,再通過探究這三個圖形面積之間的關系,證明:勾股定理a2+b2c2

2)如圖2,鐵路上AB兩點(看作直線上的兩點)相距40千米,C、D為兩個村莊(看作兩個點),ADAB,BCAB,垂足分別為A、BAD24千米,BC16千米,在AB上有一個供應站P,且PCPD,求出AP的距離;

3)借助(2)的思考過程與幾何模型,直接寫出代數式的最小值為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分別為邊ABAC的中點,將△ABC繞點B順時針旋轉120°到△A1BC1的位置,則整個旋轉過程中線段OH所掃過部分的面積(即陰影部分面積)為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】直角在初中數學學習中無處不在在數學活動課上,李老師要求同學們用所學知識,利用無刻度的直尺和圓規(guī)判斷已知∠AOB是不是直角.甲、乙兩名同學各自給出不同的作法,來判斷∠AOB是不是直角

甲:如圖1,在OAOB上分別取點CD,以C為圓心,CD長為半徑畫弧,交OB的反向延長線于點E,若OEOD,則∠AOB90°;

乙:如圖2,在OA、OB上分別截取OM4個單位長度,ON3個單位長度,若MN5個單位長度,則∠AOB90°;

甲、乙兩位同學作法正確的是( 。

A. 甲正確,乙不正確B. 乙正確,甲不正確

C. 甲和乙都不正確D. 甲和乙都正確

查看答案和解析>>

同步練習冊答案