【題目】觀察下列關(guān)于、的單項式的特點:,,,,……按此規(guī)律,第10個單項式是( )
A.B.C.D.
【答案】D
【解析】
首先判斷符號規(guī)律為奇數(shù)個為正,偶數(shù)個為負,再依次找到系數(shù)的分子變化規(guī)律,系數(shù)的分母變化規(guī)律,及a的次數(shù)變化規(guī)律.
觀察式子可知符號規(guī)律為奇數(shù)個為正,偶數(shù)個為負,
∴第10個單項式的符號為負,
∵系數(shù)的分子變化為2,6,12,20,30…依次+4,+6,+8,+10
故第10個單項式系數(shù)的分子為2+4+6+8+10+12+14+16+18+20=110,
系數(shù)的分母變化為3,5,8,13,21…依次+2,+3,+5,+8,為加上前兩次所加的和,
則分母依次為3,2+3,3+5,5+8,8+13,13+21,21+34,34+55,55+89,89+144
故第10個單項式系數(shù)的分母為89+144=233,
a的次數(shù)為每次增加1
故第10個單項式是
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一刻度尺放在數(shù)軸上.
①若刻度尺上 0cm 和 4cm 對應(yīng)數(shù)軸上的點表示的數(shù)分別為 1 和 5,則 1cm 對應(yīng)數(shù)軸上的點表示的數(shù)是 2;
②若刻度尺上 0cm 和 4cm 對應(yīng)數(shù)軸上的點表示的數(shù)分別為 1 和 9,則 1cm 對應(yīng)數(shù)軸上的點表示的數(shù)是 3;
③若刻度尺上 0cm 和 4cm 對應(yīng)數(shù)軸上的點表示的數(shù)分別為-2 和 2,則 1cm 對應(yīng)數(shù)軸上的點表示的數(shù)是-1;
④若刻度尺上 0cm 和 4 cm 對應(yīng)數(shù)軸上的點表示的數(shù)分別為-1 和 1,則 1cm 對應(yīng)數(shù)軸上的點表示的數(shù)是-0.5. 上述結(jié)論中,所有正確結(jié)論的序號是 ( )
A.①②B.②④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.
(1)這次調(diào)查的市民人數(shù)為_____人;
(2)補全條形統(tǒng)計圖;
(3)計算扇形統(tǒng)計圖中等級C對應(yīng)的圓心角的度數(shù);
(4)若該市約有市民1000000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)直接寫出點C和點D的坐標;
(3)若點P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在二次函數(shù)y=ax2+bx+c的圖象中,你認為其中正確的是( )
A. a>0 B. c>0
C. b2﹣4ac<0 D. 一元二次方程ax2+bx+c=0有兩個相等實根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分類是研究問題的一種常用方法,我們在學(xué)習(xí)有理數(shù)和代數(shù)式的相關(guān)概念、運算法則時,除了 學(xué)到了具體知識,還學(xué)會了分類思考,在進行分類時,我們首先應(yīng)明確分類標準,其次要做到分類時既不 重復(fù),也不遺漏。
(初步感受)(1)在對多項式,進行分類時,如果以項數(shù)作為分類標準,可以分為哪幾類?如果以次數(shù)作為分類標準,可以分為哪幾類?
(簡單運用)(2)已知 a, b 是有理數(shù),比較 a b 與 a b的大;
(深入思考)(3)已知 a, b c 是有理數(shù),且 ca b>ca b ,判斷 b, c 的符號,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個結(jié)論:
(1)二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
(2)拋物線與y軸交點為(0,-3);
(3)二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個小正方形的邊長都為1,四邊形ABCD的頂點都在小正方形的頂點上.
(1)求四邊形ABCD的面積;
(2)∠BCD是直角嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿著射線BC方向平移至△A′B′C′,使點A′落在∠ACB的外角平分線CD上,連結(jié)AA′.
(1)判斷四邊形ACC′A′的形狀,并說明理由;
(2)在△ABC中,∠B=90°,AB=8,cos∠BAC=,求CB′的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com