【題目】如圖,在△ABC中,AB=13,BC=14,AC=15,點D在AC上(可與點A,C重合),分別過點A、C作直線BD的垂線,垂足為E,F,則AE+CF的最大值為_____,最小值為_____.
【答案】15 12
【解析】
設AE=m,CF=n,則m+n=y,用m、n及x表示出△ABD及△CBD的面積,根據S△ABC=S△ABD+S△CBD即可得到m+n關于x的反比例函數(shù)關系式.根據垂直線段最短的性質,當BD⊥AC時,x最小,由面積公式可求得;因為AB=13,BC=14,所以當BD=BC=14時,x最大.從而根據反比例函數(shù)的性質求出y的最大值和最小值.
設BD=x,AE+CF=y,AE=m,CF=n,則m+n=y,
∵由三角形面積公式,得,,
∴,
∴,即.
∵△ABC中AC邊上的高為,
∴x的取值范圍為.
∵m+n隨x的增大而減小,
∴當時,y的最大值為15,當x=14時,y的最小值為12.
故答案為:15,12.
科目:初中數(shù)學 來源: 題型:
【題目】已知O是直線AB上的一點,∠COD是直角,OE平分∠BOC.
(1)如圖①,若∠AOC=30°,求∠DOE的度數(shù).
(2)在圖①中,若∠AOC=α,求∠DOE的度數(shù)(用含α的代數(shù)式表示).
(3)將圖①中的∠DOC繞頂點O順時針旋轉至圖②的位置,且保持射線OC在直線AB上方,在整個旋轉過程中,當∠AOC的度數(shù)是多少時,∠COE=2∠DOB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,∠A=60°,以點B為圓心的圓與AD、DC相切,與AB、CB的延長線分別相交于點E,F(xiàn),則圖中陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,相交于點,分別為上的兩點,,,分別交于兩點,連,下列結論:①;②;③;④ ,其中正確的是( )
A. ①②B. ①④C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2-2(m-1)x-m(m+2)=0
(1) 求證:此方程總有兩個不相等的實數(shù)根
(2) 若x=-2是此方程的一個根,求實數(shù)m的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點D,連接BD,則∠DBC的大小為
A. 15° B. 35° C. 25° D. 45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校園的學子餐廳把密碼做成了數(shù)學題,小亮在餐廳就餐時,思索了一會,輸入密碼,順利地連接到了學子餐廳的網絡.
(1)如果是2,那么他輸入的密碼是___________.
(2)若他輸入的密碼是4235,最后兩位被隱藏了,那么被隱藏的兩位數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出
(1)如圖①,在△ABC中,∠A=120°,AB=AC=5,則△ABC的外接圓半徑R的值為 .
問題探究
(2)如圖②,⊙O的半徑為13,弦AB=24,M是AB的中點,P是⊙O上一動點,求PM的最大值.
問題解決
(3)如圖③所示,AB、AC、BC是某新區(qū)的三條規(guī)劃路其中,AB=6km,AC=3km,∠BAC=60°,BC所對的圓心角為60°.新區(qū)管委會想在BC路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F.也就是,分別在、線段AB和AC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PE、EF和FP.為了快捷環(huán)保和節(jié)約成本要使得線段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點與所在道路之間的距離、路寬均忽略不計).
圖① 圖② 圖③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,BD是中線,延長BC至E,使CE=CD.
(1)求證:DB=DE;
(2)過點D作DF垂直BE,垂足為F,若CF=3,求△ABC的周長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com