【題目】已知:拋物線y=﹣x2﹣6x+21.求:
(1)直接寫出拋物線y=﹣x2﹣6x+21的頂點坐標(biāo);
(2)當(dāng)x>2時,求y的取值范圍.
【答案】(1)拋物線的頂點坐標(biāo)是(﹣3,30);(2))當(dāng)x>2時,y的取值范圍是y<5.
【解析】
(1)把二次函數(shù)y=﹣x2﹣6x+21化成頂點式即可寫出頂點坐標(biāo);
(3)根據(jù)二次函數(shù)開口方向和自變量x的取值范圍結(jié)合二次函數(shù)的性質(zhì)即可確定y的取值范圍.
(1)∵拋物線y=﹣x2﹣6x+21=﹣(x+3)2+30,
∴該拋物線的頂點坐標(biāo)是(﹣3,30);
(2))∵拋物線y=﹣x2﹣6x+21=﹣(x+3)2+30,
∴當(dāng)x>﹣3時,y隨x的增大而減小,
∴當(dāng)x>2時,y的取值范圍是
即當(dāng)x>2時,y的取值范圍是y<5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是反比例函數(shù)上第一象限上一個動點,點A、點B為坐標(biāo)軸上的點,A(0,k),B(k,0).已知△OAB的面積為.
(1)求k的值;
(2)連接PA、PB、AB,設(shè)△PAB的面積為S,點P的橫坐標(biāo)為t.請直接寫出S與t的函數(shù)關(guān)系式;
(3)閱讀下面的材料回答問題:
當(dāng)a>0時,
∵≥0,∴≥2,即≥2
由此可知:當(dāng)=0時,即a=1時,取得最小值2.
問題:請你根據(jù)上述材料探索(2)中△PAB的面積S有沒有最小值?若有,請直接寫出S的最小值;若沒有,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(3,0),B(0,-1),連接AB,過B點作AB的垂線段,使BA=BC,連接AC.
(1)如圖1,求C點坐標(biāo);
(2)如圖2,若P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形△BPQ,連接CQ.求證:PA=CQ.
(3)在(2)的條件下,若C、P、Q三點共線,求此時P點坐標(biāo)及∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(十九),用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依序為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整。若調(diào)整木條的夾角時不破壞此木框,則任兩螺絲的距離之最大值為何?
(A) 5 (B) 6 (C) 7 (D) 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC的內(nèi)角平分線與外角平分線分別交BC及BC的延長線于點P、Q.
(1)求∠PAQ的大;
(2)若點M為PQ的中點,求證:PM2=CM·BM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,為邊上的兩個點,且,.
(1)若,求的度數(shù);
(2)的度數(shù)會隨著度數(shù)的變化而變化嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在中,,,,垂足為點,且,連接.
(1)如圖①,求證:是等邊三角形;
(2)如圖①,若點、分別為,上的點,且,求證:;
(3)利用(1)(2)中的結(jié)論,思考并解答:如圖②,為上一點,連結(jié),當(dāng)時,線段,,之間有何數(shù)量關(guān)系,給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃銷售甲、乙兩種產(chǎn)品共件,每銷售件甲產(chǎn)品可獲得利潤萬元, 每銷售件乙產(chǎn)品可獲得利潤萬元,設(shè)該商場銷售了甲產(chǎn)品(件),銷售甲、乙兩種產(chǎn)品獲得的總利潤為(萬元).
(1)求與之間的函數(shù)表達(dá)式;
(2)若每件甲產(chǎn)品成本為萬元,每件乙產(chǎn)品成本為萬元,受商場資金影響,該商場能提供的進(jìn)貨資金至多為萬元,求出該商場銷售甲、乙兩種產(chǎn)品各為多少件時,能獲得最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com