【題目】如圖1,在四邊形ABCD中,ADBC,AB=CD=13,AD=11,BC=21,EBC的中點,PAB上的任意一點,連接PE,將PE繞點P逆時針旋轉(zhuǎn)90°得到PQ.

(1)如圖2,過A點,D點作BC的垂線,垂足分別為M,N,求sinB的值;

(2)若PAB的中點,求點E所經(jīng)過的路徑弧EQ的長(結(jié)果保留π);

(3)若點Q落在ABAD邊所在直線上,請直接寫出BP的長.

【答案】(1) ;(2)5π;(3)PB的值為

【解析】

(1)如圖1中,作AMCBM,DNBCN,根據(jù)題意易證RtABMRtDCN,再根據(jù)全等三角形的性質(zhì)可得出對應(yīng)邊相等,根據(jù)勾股定理可求出AM的值,即可得出結(jié)論;

(2)連接AC,根據(jù)勾股定理求出AC的長,再根據(jù)弧長計算公式即可得出結(jié)論;

(3)當點Q落在直線AB上時,根據(jù)相似三角形的性質(zhì)可得對應(yīng)邊成比例,即可求出PB的值;當點QDA的延長線上時,作PHADDA的延長線于H,延長HPBCG,設(shè)PB=x,則AP=13﹣x,再根據(jù)全等三角形的性質(zhì)可得對應(yīng)邊相等,即可求出PB的值.

解:(1)如圖1中,作AMCBM,DNBCN.

∴∠DNM=AMN=90°,

ADBC,

DAM=AMN=DNM=90°,

∴四邊形AMND是矩形,

AM=DN,

AB=CD=13,

RtABMRtDCN,

BM=CN,

AD=11,BC=21,

BM=CN=5,

AM==12,

RtABM中,sinB==

(2)如圖2中,連接AC.

RtACM中,AC===20,

PB=PA,BE=EC,

PE=AC=10,

的長==5π.

(3)如圖3中,當點Q落在直線AB上時,

∵△EPB∽△AMB,

==

==,

PB=

如圖4中,當點QDA的延長線上時,作PHADDA的延長線于H,延長HPBCG.

設(shè)PB=x,則AP=13﹣x.

ADBC,

∴∠B=HAP,

PG=x,PH=(13﹣x),

BG=x,

∵△PGE≌△QHP,

EG=PH,

x=(13﹣x),

BP=

綜上所述,滿足條件的PB的值為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,BC為O的切線,D為O上的一點,CD=CB,延長CD交BA的延長線于點E.

(1)求證:CD為O的切線;

(2)若BD的弦心距OF=1,ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個運算裝置,當輸入值為x時.其輸出值為y,且y是x的二次函數(shù).已知輸入值為﹣2,0,1時,相應(yīng)的輸出值分別為5,﹣3,﹣4.

(1)求二次函數(shù)的關(guān)系式;

(2)如圖,在所給的坐標系中畫出這個二次函數(shù)的圖象,并根據(jù)圖象寫出當輸出值y為正數(shù)時,輸入值x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩家超市同時采取通過搖獎返現(xiàn)金搞促銷活動,凡在超市購物滿100元的顧客均可以參加搖獎一次.小明和小華對兩家超市搖獎的50名顧客獲獎情況進行了統(tǒng)計并制成了圖表(如圖)

獎金金額

獲獎人數(shù)

20

15

10

5

商家甲超市

5

10

15

20

乙超市

2

3

20

25

(1)在甲超市搖獎的顧客獲得獎金金額的中位數(shù)是   ,在乙超市搖獎的顧客獲得獎金金額的眾數(shù)是   

(2)請你補全統(tǒng)計圖1;

(3)請你分別求出在甲、乙兩超市參加搖獎的50名顧客平均獲獎多少元?

(4)圖2是甲超市的搖獎轉(zhuǎn)盤,黃區(qū)20元、紅區(qū)15元、藍區(qū)10元、白區(qū)5元,如果你購物消費了100元后,參加一次搖獎,那么你獲得獎金10元的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經(jīng)

了解得到以下信息(如表):

工程隊

每天修路的長度(米)

單獨完成所需天數(shù)(天)

每天所需費用(元)

甲隊

30

n

600

乙隊

m

n﹣14

1160

(1)甲隊單獨完成這項工程所需天數(shù)n=  ,乙隊每天修路的長度m=  (米);

(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數(shù)).

①當x=90時,求出乙隊修路的天數(shù);

②求yx之間的函數(shù)關(guān)系式(不用寫出x的取值范圍);

③若總費用不超過22800元,求甲隊至少先修了多少米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動物實驗,首次用于臨床人體試驗,測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時間x小時之間函數(shù)關(guān)系如圖所示(當4≤x≤10時,yx成反比例).

1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段yx之間的函數(shù)關(guān)系式.

2)問血液中藥物濃度不低于2微克/毫升的持續(xù)時間多少小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,小楊在廣場上的A處正面觀測一座樓房墻上的廣告屏幕,測得屏幕下端D處的仰角為30°,然后他正對大樓方向前進5m到達B處,又測得該屏幕上端C處的仰角為45°.若該樓高為26.65m,小楊的眼睛離地面1.65m,廣告屏幕的上端與樓房的頂端平齊.求廣告屏幕上端與下端之間的距離.(≈1.732,結(jié)果精確到0.1m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=BC,BE⊥AC于點E,AD⊥BC于點D,∠BAD=45°,AD與BE交于點F,連接CF.

(1)求證:BF=2AE;

(2)若CD=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC,AE=AF,BECF交于點D,則對于下列結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.其中正確的是( 。

A. B. C. D. ①②③

查看答案和解析>>

同步練習冊答案