【題目】如圖,拋物線軸交于兩點(diǎn),是以點(diǎn)為圓心,為半徑的圓上的動(dòng)點(diǎn),是線段的中點(diǎn),連接,則線段的最小值是( )

A.B.C.D.

【答案】A

【解析】

根據(jù)拋物線解析式即可得出A點(diǎn)與B點(diǎn)坐標(biāo),結(jié)合題意進(jìn)一步可以得出BC長為5,利用三角形中位線性質(zhì)可知OE=BD,而BD最小值即為BC長減去圓的半徑,據(jù)此進(jìn)一步求解即可.

∴當(dāng)時(shí),,

解得:,

A點(diǎn)與B點(diǎn)坐標(biāo)分別為:(,0)(3,0),

即:AO=BO=3,

O點(diǎn)為AB的中點(diǎn),

又∵圓心C坐標(biāo)為(04),

OC=4

BC長度=,

O點(diǎn)為AB的中點(diǎn),E點(diǎn)為AD的中點(diǎn),

OE為△ABD的中位線,

即:OE=BD,

D點(diǎn)是圓上的動(dòng)點(diǎn),

由圖可知,BD最小值即為BC長減去圓的半徑,

BD的最小值為4,

OE=BD=2,

OE的最小值為2,

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),直線軸負(fù)半軸)軸正半軸于兩點(diǎn), 的面積為4.5;

如圖1.求的值;

如圖2.在軸負(fù)半軸上取點(diǎn).點(diǎn)在第一象限,連接,過點(diǎn)的延長線于點(diǎn),若,求的值;

如圖3,在的條件下.軸于點(diǎn)軸交的延長線于點(diǎn),設(shè)軸交于點(diǎn),連接,當(dāng)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明對(duì)九(1)、九(2)班(人數(shù)都為50人)參加“陽光體育”的情況進(jìn)行了調(diào)查,統(tǒng)計(jì)結(jié)果如圖所示.下列說法中正確的是( )

A.喜歡乒乓球的人數(shù)(1)班比(2)班多B.喜歡足球的人數(shù)(1)班比(2)班多

C.喜歡羽毛球的人數(shù)(1)班比(2)班多D.喜歡籃球的人數(shù)(2)班比(1)班多

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),連接AE,CE

1)求證:AE=CE;

2)若BC=,BE=6,求tanBAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,軸的正半軸,,分別與雙曲線相交于點(diǎn)和點(diǎn),且,若,則點(diǎn)的橫坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜每千克售價(jià)y1(元)與銷售月份x之間的關(guān)系如圖1所示,每千克成本y2(元)與銷售月份x之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在對(duì)稱軸平行于y軸的同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1)

1)求出y1x函數(shù)關(guān)系式;

2)求出y2x函數(shù)關(guān)系式;

3)設(shè)這種蔬菜每千克收益為w元,試問在哪個(gè)月份出售這種蔬菜,w將取得最大值?并求出此最大值.(收益=售價(jià)﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)DAB上,以AD為直徑的⊙O與邊BC相切于點(diǎn)E,與邊AC相交于點(diǎn)G,且,連接GO并延長交⊙O于點(diǎn)F,連接BF

1)求證:AOAG

2)求證:BF是⊙O的切線;

3)若BD6,求圖形中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)在同一直線上,點(diǎn)位于的同側(cè),連接,,.

1)如圖1,求證:;

2)如圖2,連接,請(qǐng)直接寫出圖中所有的全等三角形(除外)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像經(jīng)過點(diǎn)A(-1,0),并與反比例函數(shù))的圖像交于Bm,4

1)求的值;

2)以AB為一邊,在AB的左側(cè)作正方形,求C點(diǎn)坐標(biāo);

3)將正方形沿著軸的正方向,向右平移n個(gè)單位長度,得到正方形,線段的中點(diǎn)為點(diǎn),若點(diǎn)和點(diǎn)同時(shí)落在反比例函數(shù)的圖像上,求n的值.

查看答案和解析>>

同步練習(xí)冊答案