【題目】(10分)如圖,△ABC中,邊AB、AC的垂直平分線分別交BC于D、E.
(1)若BC=10,則△ADE周長(zhǎng)是多少?為什么?
(2)若∠BAC=128°,則∠DAE的度數(shù)是多少?為什么?
【答案】(1)△ADE周長(zhǎng)為10;(2)∠DAE=76°.
【解析】
試題(1)根據(jù)垂直平分線性質(zhì)得AD=BD,AE=EC.所以△ADE周長(zhǎng)=BC;
(2)∠DAE=∠BAC﹣(∠BAD+∠CAE).根據(jù)三角形內(nèi)角和定理及等腰三角形性質(zhì)求解.
解:(1)C△ADE=10.
∵AB、AC的垂直平分線分別交BC于D、E,
∴AD=BD,AE=CE.
C△ADE=AD+DE+AE=BD+DE+CE=BC=10.
(2)∠DAE=76°.
∵AB、AC的垂直平分線分別交BC于D、E,
∴AD=BD,AE=CE.
∴∠B=∠BAD,∠C=∠CAE.
∵∠BAC=128°,
∴∠B+∠C=52°.
∴∠DAE=∠BAC﹣(∠BAD+∠CAE)
=∠BAC﹣(∠B+∠C)=76°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:
觀察下列等式: , , ,
將以上三個(gè)等式兩邊分別相加得:
.
(1)直接寫出下列各式的計(jì)算結(jié)果:
=
(2)猜想并寫出: = ( ﹣ ).
(3)探究并解方程: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點(diǎn)E,F(xiàn)是OE上的一點(diǎn),使CF∥BD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說明理由;
(3)若BC=AD=8,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為CD上一點(diǎn),連接AE、BD,且AE、BD交于點(diǎn)F,DE:EC=2:3,則S△DEF:S△ABF=( )
A.2:3
B.4:9
C.2:5
D.4:25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中AD是∠A的外角平分線,P是AD上一動(dòng)點(diǎn)且不與點(diǎn)A、D重合,記PB+PC=a,AB+AC=b,則a、b的大小關(guān)系是( )
A.a>b B.a=b C.a<b D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)F在邊BC上,且AF=AD,過點(diǎn)D作DE⊥AF,垂足為點(diǎn)E.
(1)求證:DE=AB.
(2)以D為圓心,DE為半徑作圓弧交AD于點(diǎn)G.若BF=FC=1,試求 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),∠A與∠1+∠2之間有一種數(shù)量關(guān)系始終保持不變,請(qǐng)?jiān)囍乙徽疫@個(gè)規(guī)律,你發(fā)現(xiàn)的規(guī)律是什么?試說明你找出的規(guī)律的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旋轉(zhuǎn)變換是全等變換的一種形式,我們?cè)诮忸}實(shí)踐中經(jīng)常用旋轉(zhuǎn)變換的方法來構(gòu)造全等三角形來解決問題。
(1)方法探究:如圖①,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E在邊BC上,∠DAE=45°
試探究線段BD、CE、DE可以組成什么樣的三角形。我們可以過點(diǎn)B作BF⊥BC,使BF=EC,連接AF、DF,易得∠AFB=45°進(jìn)而得到△AFB≌△AEC,相當(dāng)于把△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△AFB,請(qǐng)接著完成下面的推理過程:
∵△AFB≌△AEC,
∴∠BAF= ,AF=AE,
∵∠BAC=90°,∠DAE=45°,
∴∠BAD+∠CAE= ,
∴∠BAF+∠BAD=45°,
∴∠DAF=45°= ,
在△DAF與△DAE中,
AF=AE,
∠DAF=∠DAE,
AD=AD,
∴△DAF≌△DAE,
∴DF= ,
∵BD、BF、DF組成直角三角形,
∴BD、CE、DE組成直角三角形.
(2)方法運(yùn)用
① 如圖②,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠ABC+∠ADC=180°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上,∠EAF=45°試判斷線段BE、DF、EF之間的數(shù)量關(guān)系,并說明理由。
② 如圖③,在①的基礎(chǔ)上若點(diǎn)E、F分別在BC和CD的延長(zhǎng)線,其他條件不變,①中的關(guān)系在圖③中是否仍然成立?若成立請(qǐng)說明理由;若不成立請(qǐng)寫出新的關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為v厘米/秒,則當(dāng)△BPD與△CQP全等時(shí),v的值為________厘米/秒.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com