【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數量關系,并說明理由:
(3)拓展與運用:
正方形CEGF在旋轉過程中,當B,E,F三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC= .
【答案】(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數量關系為AG=BE;(3)3
【解析】(1)①由、結合可得四邊形CEGF是矩形,再由即可得證;
②由正方形性質知、,據此可得、,利用平行線分線段成比例定理可得;
(2)連接CG,只需證∽即可得;
(3)證∽得,設,知,由得、、,由可得a的值.
(1)①∵四邊形ABCD是正方形,
∴∠BCD=90°,∠BCA=45°,
∵GE⊥BC、GF⊥CD,
∴∠CEG=∠CFG=∠ECF=90°,
∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,
∴EG=EC,
∴四邊形CEGF是正方形;
②由①知四邊形CEGF是正方形,
∴∠CEG=∠B=90°,∠ECG=45°,
∴,GE∥AB,
∴,
故答案為:;
(2)連接CG,
由旋轉性質知∠BCE=∠ACG=α,
在Rt△CEG和Rt△CBA中,
=cos45°=、=cos45°=,
∴=,
∴△ACG∽△BCE,
∴,
∴線段AG與BE之間的數量關系為AG=BE;
(3)∵∠CEF=45°,點B、E、F三點共線,
∴∠BEC=135°,
∵△ACG∽△BCE,
∴∠AGC=∠BEC=135°,
∴∠AGH=∠CAH=45°,
∵∠CHA=∠AHG,
∴△AHG∽△CHA,
∴,
設BC=CD=AD=a,則AC=a,
則由得,
∴AH=a,
則DH=AD﹣AH=a,CH==a,
∴由得,
解得:a=3,即BC=3,
故答案為:3.
科目:初中數學 來源: 題型:
【題目】列方程解應用題:
某商場用8萬元購進一批新款襯衫,上架后很快銷售一空,商場又緊急購進第二批這種襯衫,數量是第一次的2倍,但進價漲了4元/件,結果共用去17.6萬元.
(1)該商場第一批購進襯衫多少件?
(2)商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結AE、DE、DC
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某企業(yè)在甲地有一工廠(簡稱甲廠)生產某產品,2017年的年產量過萬件,2018年甲廠經過技術改造,日均生產的該產品數是該廠2017年的2倍還多2件.
(1)若甲廠2018年生產200件該產品所需的時間與2017年生產99件該產品所需的時間相同,則2017年甲廠日均生產該產品多少件?
(2)由于該產品深受顧客歡迎,2019年該企業(yè)在乙地建立新廠(簡稱乙廠)生產該產品.乙廠的日均生產的該產品數是甲廠2017年的3倍還多4件.同年該企業(yè)要求甲、乙兩廠分別生產m,n件產品(甲廠的日均產量與2018年相同),m:n=14:25,若甲、乙兩廠同時開始生產,誰先完成任務?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為48和36,求△EDF的面積________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在水上治安指揮塔西側兩條航線、上有兩艘巡邏艇與所在航線靠近,直線、間的距離,點在點的南偏西方向上,且,在的北偏東方向上.求:
巡邏艇與塔之間的距離.(結果保留根號)
已知巡邏艇的速度每小時比巡邏艇快,當兩艘巡邏艇同時到達指揮塔的正南方向時,求巡邏艇的速度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,,點是邊上一點,點,是邊上兩點,且,作點關于的對稱點點,連接,,.
(1)依題意補全圖形;
(2)猜想______°,并證明;
(3)猜想線段、、的數量關系______,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某汽車銷售公司經銷某品牌A款汽車,隨著汽車的普及,其價格也在不斷下降.今年5月份A款汽車的售價比去年同期每輛降價2萬元.如果賣出相同數量的A款汽車,去年銷售額為100萬元,今年銷售額只有90萬元.
(1)今年5月份A款汽車每輛銷售多少萬元?
(2)為了增加收入,汽車銷售公司決定再經銷同品牌的B款汽車,已知A款汽車每輛進價為8.5萬元,B款汽車每輛進價為6萬元,公司預計用多于100萬元且少于110萬元的資金購進這兩款汽車共15輛,問有幾種進貨方案?
(3)在(2)的前提下,如果B款汽車每輛售價為12萬元,為打開B款汽車的銷路,公司決定每售出一輛B款汽車,獎勵顧客現金1.8萬元,怎樣進貨公司的利潤最大(假設能全部賣出)?最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com