【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連AD.AB=,ON=1,則⊙O的半徑長為_____________.
【答案】3
【解析】
先根據(jù)圓周角定理得出∠BAD=∠BCD,再由直角三角形的性質(zhì)得出∠ANE=∠CNM,故可得出∠BCD=∠BAM,由全等三角形的判定定理得出△ANE≌△ADE,得到NE=ED,根據(jù)垂徑定理求出AE的長,設(shè)NE=,則OE=,NE=ED=,r=OD=OE+ED=,連結(jié)AO,則AO=OD=,在Rt△AOE中根據(jù)勾股定理可得出的值,進而得出結(jié)論.
∵∠BAD與∠BCD是同弧所對的圓周角,
∴∠BAD=∠BCD,
∵AE⊥CD,AM⊥BC,
∴∠AMC=∠AEN=90°,
∵∠ANE=∠CNM,
∴∠BCD=∠BAM,
∴∠BAM=BAD,
在△ANE與△ADE中,
,
∴△ANE≌△ADE,
∴NE=ED,
∵AB=,AE⊥CD,
∴AE=AB =,
又∵ON=1,
∴設(shè)NE=,則OE=,NE=ED=,,
連結(jié)AO,
∴AO=OD=,
∵△AOE是直角三角形,AE=,,OE=,AO=,
∴,即,
整理得:,
解得:(舍去),
∴.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2020年第35屆全國青少年科技創(chuàng)新大賽,某學(xué)校舉辦了A:機器人;B:航模;C:科幻繪畫;D:信息學(xué);E:科技小制作等五項比賽活動(每人限報一項),將各項比賽的參加人數(shù)繪制成如圖兩幅不完整的統(tǒng)計圖.
根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次參加比賽的學(xué)生人數(shù)是_________名;
(2)把條形統(tǒng)計圖補充完整;
(3)求扇形統(tǒng)計圖中表示機器人的扇形圓心角的度數(shù);
(4)在C組最優(yōu)秀的3名同學(xué)(1名男生2名女生)和E組最優(yōu)秀的3名同學(xué)(2名男生1名女生)中,各選1名同學(xué)參加上一級比賽,利用樹狀圖或表格,求所選兩名同學(xué)中恰好是1名男生1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,動點P從A點出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某風(fēng)景區(qū)內(nèi)的公路如圖1所示,景區(qū)內(nèi)有免費的班車,從入口處出發(fā),沿該公路開往草甸,途中?克郑ㄉ舷萝嚂r間忽略不計).第一班車上午8點發(fā)車,以后每隔10分鐘有一班車從入口處發(fā)車.小聰周末到該風(fēng)景區(qū)游玩,上午7:40到達入口處,因還沒到班車發(fā)車時間,于是從景區(qū)入口處出發(fā),沿該公路步行25分鐘后到達塔林.離入口處的路程(米)與時間(分)的函數(shù)關(guān)系如圖2所示.
(1)求第一班車離入口處的路程(米)與時間(分)的函數(shù)表達式.
(2)求第一班車從人口處到達塔林所蓄的時間.
(3)小聰在塔林游玩40分鐘后,想坐班車到草甸,則小聘聰最早能夠坐上第幾班車?如果他坐這班車到草甸,比他在塔林游玩結(jié)束后立即步行到草甸提早了幾分鐘?(假設(shè)每一班車速度均相同,小聰步行速度不變)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,且AB=6cm,點C為半圓上的一點,將此半圓沿BC所在的直線折疊,若圓弧BC恰好過圓心O,則圖中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“互聯(lián)網(wǎng)+”時代,網(wǎng)上購物備受消費者青睞.某網(wǎng)店專售一種商品,其成本為每件元,已知銷售過程中,銷售單價不低于成本單價,且物價部門規(guī)定這種商品的獲利不得高于.據(jù)市場調(diào)查發(fā)現(xiàn),月銷售量(件)與銷售單價(元)之間的函數(shù)關(guān)系如表:
銷售單價(元) | 65 | 70 | 75 | 80 | ··· |
月銷售量(件) | 475 | 450 | 425 | 400 | ··· |
請根據(jù)表格中所給數(shù)據(jù),求出關(guān)于的函數(shù)關(guān)系式;
設(shè)該網(wǎng)店每月獲得的利潤為元,當(dāng)銷售單價為多少元時,每月獲得的利潤最大,最大利潤是多少?
該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤中捐出元資助貧困學(xué)生.為了保證捐款后每月利潤不低于元,且讓消費者得到最大的實惠,該如何確定該商品的銷售單價?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.為了解一批電池的使用壽命,應(yīng)采用全面調(diào)查的方式
B.數(shù)據(jù),,...,的平均數(shù)是,方差是,則數(shù)據(jù),,...,的平均數(shù)是,方差是
C.通過對甲、乙兩組學(xué)生數(shù)學(xué)成績的跟蹤調(diào)查,整理計算得到甲、乙兩組數(shù)據(jù)的方差為,,則乙數(shù)據(jù)較為穩(wěn)定
D.為了解官渡區(qū)九年級多名學(xué)生的視力情況,從中隨機選取名學(xué)生的視力情況進行分析,則選取的樣本容量為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘快艇從O港出發(fā),向西北方向行駛到M處,然后向正東行駛到N處,再向西南方向行駛,共經(jīng)過1.5小時回到O港,已知快艇的速度是每小時50海里,則M,N之間的距離是( 。┖@
A.75﹣75B.C.75D.50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,草原上有A,B,C三個互通公路的奶牛養(yǎng)殖基地,B與C之間距離為100千米,C在B的正北方,A在C的南偏東60°方向且在B的北偏東30°方向.A地每年產(chǎn)奶3萬噸;B地有奶牛9000頭,平均每頭牛的年產(chǎn)奶量為3噸;C地養(yǎng)了三種奶牛,其中黑白花牛的頭數(shù)占20%,三河牛的頭數(shù)占35%,其他情況反映在圖(2),圖(3)中.
(1)通過計算補全圖(3);
(2)比較B地與C地中,哪一地平均每頭牛的年產(chǎn)奶量更高?
(3)如果從B,C兩地中選擇一處建設(shè)一座工廠解決三個基地的牛奶加工問題,當(dāng)運送一噸牛奶每千米的費用都為1元,那么從節(jié)省運費的角度考慮,應(yīng)在何處建設(shè)工廠?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com