【題目】如圖,是的內(nèi)接正三角形,點(diǎn)是圓心,點(diǎn),分別在邊,上,若,則的度數(shù)是____度.
【答案】120
【解析】
本題可通過(guò)構(gòu)造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結(jié)合同弧所對(duì)的圓周角等于圓心角的一半求解本題.
連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:
因?yàn)榈冗吶切?/span>ABC,OH⊥AC,OM⊥AB,
由垂徑定理得:AH=AM,
又因?yàn)?/span>OA=OA,故△OAH△OAM(HL).
∴∠OAH=∠OAM.
又∵OA=OB,AD=EB,
∴∠OAB=∠OBA=∠OAD,
∴△ODA△OEB(SAS),
∴∠DOA=∠EOB,
∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.
又∵∠C=60°以及同弧,
∴∠AOB=∠DOE=120°.
故本題答案為:120.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊長(zhǎng)5米寬4米的地毯,為了美觀設(shè)計(jì)了兩橫、兩縱的配色條紋(圖中陰影部分),已知配色條紋的寬度相同,所占面積是整個(gè)地毯面積的.
(1)求配色條紋的寬度;
(2)如果地毯配色條紋部分每平方米造價(jià)200元,其余部分每平方米造價(jià)100元,求地毯的總造價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一組數(shù)據(jù):3,1,2,4,2,5,4去掉3后,新的數(shù)據(jù)的特征量發(fā)生變化的是( )
A.中位數(shù)B.平均數(shù)C.眾數(shù)D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D在拋物線上,且CD∥AB.AD與y軸相交于點(diǎn)E,過(guò)點(diǎn)E的直線PQ平行于x軸,與拋物線相交于P,Q兩點(diǎn),則線段PQ的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國(guó)際合作高峰論壇在北京舉行,本屆論壇期間,中國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬(wàn)件銷往“一帶一路”沿線國(guó)家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價(jià)各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬(wàn)元,則至少銷售甲種商品多少萬(wàn)件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】脫貧攻堅(jiān)工作讓老百姓過(guò)上了幸福的生活.如圖①是政府給貧困戶新建的房屋,如圖②是房屋的側(cè)面示意圖,它是一個(gè)軸對(duì)稱圖形,對(duì)稱軸是房屋的高所在的直線.為了測(cè)量房屋的高度,在地面上點(diǎn)測(cè)得屋頂的仰角為,此時(shí)地面上點(diǎn)、屋檐上點(diǎn)、屋頂上點(diǎn)三點(diǎn)恰好共線,繼續(xù)向房屋方向走到達(dá)點(diǎn)時(shí),又測(cè)得屋檐點(diǎn)的仰角為,房屋的頂層橫梁,,交于點(diǎn)(點(diǎn),,在同一水平線上).(參考數(shù)據(jù):,,,)
(1)求屋頂?shù)綑M梁的距離;
(2)求房屋的高(結(jié)果精確到).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有兩個(gè)相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個(gè)角的夾邊稱為鄰余線.
(1)如圖1,在△ABC中,AB=AC,AD是△ABC的角平分線,E,F分別是BD,AD上的點(diǎn).求證:四邊形ABEF是鄰余四邊形.
(2)如圖2,在5×4的方格紙中,A,B在格點(diǎn)上,請(qǐng)畫(huà)出一個(gè)符合條件的鄰余四邊形ABEF,使AB是鄰余線,E,F在格點(diǎn)上.
(3)如圖3,在(1)的條件下,取EF中點(diǎn)M,連結(jié)DM并延長(zhǎng)交AB于點(diǎn)Q,延長(zhǎng)EF交AC于點(diǎn)N.若N為AC的中點(diǎn),DE=2BE,QB=6,求鄰余線AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某學(xué)校落實(shí)立德樹(shù)人根本任務(wù),構(gòu)建“五育并舉”教育體系,開(kāi)設(shè)了“廚藝、園藝、電工、木工、編織”五大類勞動(dòng)課程.為了解七年級(jí)學(xué)生對(duì)每類課程的選擇情況,隨機(jī)抽取了七年級(jí)若干名學(xué)生進(jìn)行調(diào)查(每人只選一類最喜歡的課程),將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:
(1)本次隨機(jī)調(diào)查的學(xué)生人數(shù)為 人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校七年級(jí)共有800名學(xué)生,請(qǐng)估計(jì)該校七年級(jí)學(xué)生選擇“廚藝”勞動(dòng)課程的人數(shù);
(4)七(1)班計(jì)劃在“園藝、電工、木工、編織”四大類勞動(dòng)課程中任選兩類參加學(xué)校期末展示活動(dòng),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求恰好選中“園藝、編織”這兩類勞動(dòng)課程的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=kx-1(x>0)的圖象經(jīng)過(guò)點(diǎn)A(1,2)和點(diǎn)B(m,n)(m>1),過(guò)點(diǎn)B作y軸的垂線,垂足為C.
(1)求該反比例函數(shù)解析式;
(2)當(dāng)△ABC面積為2時(shí),求點(diǎn)B的坐標(biāo).
(3)P為線段AB上一動(dòng)點(diǎn)(P不與A、B重合),在(2)的情況下,直線y=ax﹣1與線段AB交于點(diǎn)P,直接寫(xiě)出a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com