【題目】我們定義:將一個(gè)圖形繞某一定點(diǎn)按某一方向旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于等于360°),并且各邊長(zhǎng)伸縮相同的倍數(shù)得到另一個(gè)圖形,如圖①,這種變換叫做旋轉(zhuǎn)伸縮變換,其中定點(diǎn)叫做旋轉(zhuǎn)中心,對(duì)應(yīng)邊的比叫做伸縮比.

(特例感知)

1)如圖①,是等邊三角形,繞點(diǎn)A作旋轉(zhuǎn)伸縮變換得,連接,

①若,則旋轉(zhuǎn)角的度數(shù)為________;

②若伸縮比為21,則線(xiàn)段的數(shù)量關(guān)系為________;

③直線(xiàn)與直線(xiàn)所夾的銳角為________;

(探究證明)

2)如圖②,在中,,將繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)一定的角度,作旋轉(zhuǎn)伸縮變換得到,連接、,直線(xiàn)與直線(xiàn)相交于點(diǎn)P,請(qǐng)判斷的值及的度數(shù),并說(shuō)明理由;

(問(wèn)題解決)

3)在(2)的條件下,若,求當(dāng)點(diǎn)與點(diǎn)P重合時(shí),的長(zhǎng).

【答案】1)①50°310°;②;③60°;(2,理由見(jiàn)解析;(3的長(zhǎng)為

【解析】

解:

【解法提示】①如題圖①,∵

∴旋轉(zhuǎn)角的度數(shù)為50°310°;

②∵,

,

;

③如圖①,延長(zhǎng),交于點(diǎn)P,交于點(diǎn)O

,

又∵,

即直線(xiàn)與直線(xiàn)所夾的銳角為60°;

圖①

2

理由如下:

如圖②,在中,,

由旋轉(zhuǎn)伸縮變換得:,

,

又∵

,即

圖②

3)①當(dāng)點(diǎn)與點(diǎn)P重合時(shí),如圖③,

圖③

由(2)知,

∴設(shè),則

中,,

中,,

中,由勾股定理得:

,

解得(舍去),

②當(dāng)點(diǎn)與點(diǎn)P重合時(shí),如圖④,

圖④

由(2)知,

∴設(shè),則

中,,

中,由勾股定理得:

,

解得(舍去),

綜上所述,當(dāng)點(diǎn)與點(diǎn)P重合時(shí),的長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家家電下鄉(xiāng)政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).

1)若這種冰箱的售價(jià)降低50元,每天的利潤(rùn)是 元;

2)商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利4800元,同時(shí)又要使百姓得到更多的實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?

3)每臺(tái)冰箱降價(jià)多少元時(shí)利潤(rùn)最高,并求出最高利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,為直徑,,點(diǎn)D為弦的中點(diǎn),點(diǎn)E為上任意一點(diǎn),則的大小可能是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知正方形ABCD,對(duì)角線(xiàn)ACBD交于點(diǎn)O,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)BC重合),過(guò)點(diǎn)P作∠BPF,使得∠BPF=ACB,BGPF于點(diǎn)F,交AC于點(diǎn)G,PFBD于點(diǎn)E,給出下列結(jié)論,其中正確的是(

;②PE=2BF;③在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,當(dāng)GB=GP時(shí),;④當(dāng)PBC的中點(diǎn)時(shí),

A.①②③B..①②④C.②③④D..①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,.點(diǎn)P是平面內(nèi)不與A,C重合的任意一點(diǎn),連接,將線(xiàn)段繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)得到線(xiàn)段,連接.點(diǎn)M的中點(diǎn),點(diǎn)N的中點(diǎn).

1)問(wèn)題發(fā)現(xiàn)

如圖1,當(dāng)時(shí),的值是________,直線(xiàn)與直線(xiàn)相交所成的較小角的度數(shù)是________

2)類(lèi)比探究

如圖2,當(dāng)時(shí),請(qǐng)寫(xiě)出的值及直線(xiàn)與直線(xiàn)相交所成的較小角的度數(shù),并就圖2的情形說(shuō)明理由.

3)解決問(wèn)題

如圖3,當(dāng)時(shí),若點(diǎn)E的中點(diǎn),點(diǎn)P在直線(xiàn)上,請(qǐng)直接寫(xiě)出點(diǎn)B,PD在同一條直線(xiàn)上時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“大潤(rùn)發(fā)”、“世紀(jì)聯(lián)華”兩家超市出售同樣的洗衣液和香皂,洗衣液和香皂在兩家超市的售價(jià)分別一樣.已知買(mǎi)1袋洗衣液和2塊香皂要花費(fèi)48元,買(mǎi)3袋洗衣液和4塊香皂要花費(fèi)134元.

1)一袋洗衣液與一塊香皂售價(jià)各是多少元?(列方程組求解)

2)為了迎接“五一勞動(dòng)節(jié)”,兩家超市都在搞促銷(xiāo)活動(dòng),“大潤(rùn)發(fā)”超市規(guī)定:這兩種商品都打八五折;“世紀(jì)聯(lián)華”超市規(guī)定:買(mǎi)一袋洗衣液贈(zèng)送一塊香皂.若媽媽想要買(mǎi)4袋洗衣液和10塊香皂,又只能在一家超市購(gòu)買(mǎi),你覺(jué)得選擇哪家超市購(gòu)買(mǎi)更合算?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】開(kāi)學(xué)前夕,某文具店準(zhǔn)備購(gòu)進(jìn)A、B兩種品牌的文具袋進(jìn)行銷(xiāo)售,若購(gòu)進(jìn)A品牌文具袋和B品牌文具袋各5個(gè)共花費(fèi)125元,購(gòu)進(jìn)A品牌文具袋3個(gè)和B品牌文具袋各4個(gè)共花費(fèi)90元.

1)求購(gòu)進(jìn)A品牌文具袋和B品牌文具袋的單價(jià);

2)若該文具店購(gòu)進(jìn)了A,B兩種品牌的文具袋共100個(gè),其中A品牌文具袋售價(jià)為12元,B品牌文具袋售價(jià)為23元,設(shè)購(gòu)進(jìn)A品牌文具袋x個(gè),獲得總利潤(rùn)為y元.

y關(guān)于x的函數(shù)關(guān)系式;

要使銷(xiāo)售文具袋的利潤(rùn)最大,且所獲利潤(rùn)不超過(guò)進(jìn)貨價(jià)格的40%,請(qǐng)你幫該文具店設(shè)計(jì)一個(gè)進(jìn)貨方案,并求出其所獲利潤(rùn)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線(xiàn)x軸交于點(diǎn)A3,0)和點(diǎn)B,與y軸相交于點(diǎn)C0,3),拋物線(xiàn)的頂點(diǎn)為點(diǎn)D

1)求拋物線(xiàn)的表達(dá)式及頂點(diǎn)D的坐標(biāo);

2)聯(lián)結(jié)AD、AC、CD,求∠DAC的正切值;

3)如果點(diǎn)P是原拋物線(xiàn)上的一點(diǎn),且∠PAB=DAC,將原拋物線(xiàn)向右平移m個(gè)單位(m>0),使平移后新拋物線(xiàn)經(jīng)過(guò)點(diǎn)P,求平移距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A1,1),B4,0),C4,4).

1)按下列要求作圖:

①將△ABC向左平移4個(gè)單位,得到△A1B1C1

②將△A1B1C1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)90°,得到△A2B2C2

2)求點(diǎn)C1在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案