【題目】如圖,在△ABC中AC=BC,∠ACB=90°,以BC為直徑作⊙O,連接OA,交⊙O于點D,過D點作⊙O的切線交AC于點E,連接B、D并延長交AC于點F.則下列結(jié)論錯誤的是( 。
A. △ADE∽△ACO B. △AOC∽△BFC
C. △DEF∽△DOC D. CD2=DFDB
【答案】B
【解析】
根據(jù)相似三角形的判定定理,對各選項的三角形進行分析證明,然后利用排除法求解.
解:A、∵DE是⊙O的切線,
∴∠ADE=90°,
∵∠ACB=90°,
∴∠ADE=∠ACB,
∵∠DAE=∠CAO,
∴△ADE∽△ACO;
故本選項正確;
B、假設(shè)△AOC∽△BFC,
則有∠OAC=∠FBC,
∵∠ACB=90°,以BC為直徑作⊙O,
∴AC是⊙O的切線,
∴∠ACD=∠FBC,
∵∠ODC=∠OAC+∠ACD=2∠OAC,∠COD=2∠FBC,
∴∠ODC=∠COD,
∴OC=CD,
又∵OD=OC,
∴OC=CD=OD,
即△OCD是等邊三角形,∠AOC=60°,
∴AC=OC①,
而在△ABC中,AC=BC,BC=2OC,
∴AC=2OC②,
∴假設(shè)與題目條件相矛盾,
故假設(shè)不成立,所以△AOC與△BFC不相似;
故本選項錯誤;
C、∵∠ACB=90°,
∴∠CBD+∠BFC=90°,
∴BC是⊙O的直徑,
∴∠CBD+∠BCD=90°,
∴∠BCD=∠BFC,
∵DE是⊙O的切線,AC是⊙O的切線,
∴∠CDE=∠CED=∠CBD,
又∵∠AED=∠CDE+∠CED=2∠CBD,
∠COD=2∠CBD,
∴∠AED=∠COD,
在△DEF∽△DOC中,
,
∴△DEF∽△DOC,
故本選項正確;
D、∵BC為⊙O的直徑,
∴∠CDB=90°,
∴CD⊥BF,
∵∠ACB=90°,
∴CD2=DFDB,
故本選項正確.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線EF分別交△ABC的邊AB,AC和CB的延長線于點D,E,F.
(1)求證:∠F+∠FEC=2∠A;
(2)過B點作BM∥AC交FD于點M,試探究∠MBC與∠F+∠FEC的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某日上午點鐘,市氣象局測得在城市正東方向處點有一臺風(fēng)中心正在以千米/時的速度沿西偏北的方向迅速移動(如圖所示).據(jù)資料表明,在距離臺風(fēng)中心范圍內(nèi)為嚴重影響區(qū)域(假定臺風(fēng)中心移動方向不變,影響力不變).(參考數(shù)據(jù):,).
(1)市會不會受這次臺風(fēng)的嚴重影響,為什么;
(2)如果市會受嚴重影響,那么這次臺風(fēng)對市嚴重影響多長時間?
(3)市規(guī)定臺風(fēng)嚴重影響前一小時向市民發(fā)出預(yù)警警報.如果市會受這次臺風(fēng)嚴重影響,那么市應(yīng)在幾點鐘發(fā)出預(yù)警警報?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求證:等腰三角形兩腰上的中線相等.
(1)請用尺規(guī)作出△ABC兩腰上的中線BD、CE(保留痕跡,不寫作法);
(2)結(jié)合圖形,寫出已知、求證和證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,
(1)求證:AC2=ABAD;
(2)求證:△AFD∽△CFE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為10,點E、F分別在邊BC、CD上,且∠EAF=45°,AH⊥EF于點H,AH=10,連接BD,分別交AE、AH、AF于點P、G、Q.
(1)求△CEF的周長;
(2)若E是BC的中點,求證:CF=2DF;
(3)連接QE,求證:AQ=EQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)關(guān)系中,隨的增大而減小的是( )
A.長方形的長一定時,其面積與寬的函數(shù)關(guān)系
B.高速公路上勻速行駛的汽車,其行駛的路程與行駛時間的函數(shù)關(guān)系
C.如圖1,在平面直角坐標(biāo)系中,點、,的面積與點的橫坐標(biāo)的函數(shù)關(guān)系
D.如圖2,我市某一天的氣溫(度)與時間(時)的函數(shù)關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+ 與y軸相交于點A,點B與點O關(guān)于點A對稱.
(1)填空:點B的坐標(biāo)為________;
(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com