【題目】某小型水庫(kù)的管理部門為研究庫(kù)區(qū)水量的變化情況,決定安排兩個(gè)小組在同一年中各自獨(dú)立的進(jìn)行觀察研究.其中一個(gè)小組研究水源涵養(yǎng)情況.他們通過(guò)觀察入庫(kù)的若干小溪和降雨量等因素,隨機(jī)記錄了天的日入庫(kù)水量數(shù)據(jù)(單位:),得到下面的柱狀圖(如圖甲).另一小組則研究由于放水、蒸發(fā)或滲漏造成的水量消失情況.他們通過(guò)觀察與水庫(kù)相連的特殊小池塘的水面下降情況來(lái)研究庫(kù)區(qū)水的整體消失量,隨機(jī)記錄了天的庫(kù)區(qū)日消失水量數(shù)據(jù)(單位:),并將觀測(cè)數(shù)據(jù)整理成頻率分布直方圖(如圖乙).

1)據(jù)此估計(jì)這一年中日消失水量的平均值;

2)以頻率作為概率,試解決如下問(wèn)題:

分別估計(jì)日流入水量不少于和日消失量不多于的概率;

試估計(jì)經(jīng)過(guò)一年后,該水庫(kù)的水量是增加了還是減少了,變化的量是多少?(一年按天計(jì)算),說(shuō)明理由.

【答案】123;(2)①日流入水量不少于概率為,日消失量不多于的概率;②減少了,理由詳見(jiàn)解析.

【解析】

1)根據(jù)圖乙所給數(shù)據(jù),即可求得日消失水量的平均值,即可求得答案;

2)①根據(jù)圖甲所給數(shù)據(jù),求得日流入水量不少于的概率和日消失水量不多于的概率. ②求得該湖區(qū)日進(jìn)水量的平均值為,結(jié)合已知,即可求得答案.

1)根據(jù)圖乙,日消失水量的平均值為

(千

2)①根據(jù)圖甲可得,日流入水量不少于的概率為

日消失水量不多于的概率為:

②該湖區(qū)日進(jìn)水量的平均值為

(千

一年后水庫(kù)的水減少了.

減少的量為()

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 若命題均為真命題,則命題為真命題

B. “若,則”的否命題是“若

C. ,“”是“”的充要條件

D. 命題”的否定為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的離心率為,過(guò)左焦點(diǎn)且斜率為的直線交橢圓兩點(diǎn),線段的中點(diǎn)為,直線交橢圓兩點(diǎn).

(1)求橢圓的方程;

(2)求證:點(diǎn)在直線上;

(3)是否存在實(shí)數(shù),使得?若存在,求出的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展和個(gè)人收入的提高,自2018101日起,個(gè)人所得稅起征點(diǎn)和稅率依法進(jìn)行調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:

個(gè)人所得稅稅率表(調(diào)整前)

個(gè)人所得稅稅率表(調(diào)整后)

免征額3500

免征額5000

級(jí)數(shù)

全月應(yīng)納稅所得額

稅率(

級(jí)數(shù)

全月應(yīng)納稅所得額

稅率(

1

不超過(guò)1500元的部分

3

1

不超過(guò)3000元的部分

3

2

超過(guò)1500元至4500元的部分

10

2

超過(guò)3000元至12000元的部分

10

3

超過(guò)4500元至9000元的部分

20

3

超過(guò)12000元至25000元的部分

20

1)假如小李某月的工資、薪金等所得稅前收入為7500元時(shí),請(qǐng)你幫小李算一下調(diào)整后小李的實(shí)際收入比調(diào)整前增加了多少?

2)某稅務(wù)部門在小李所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:

收入

(元)

人數(shù)

30

40

10

8

7

5

先從收入在的人群中按分層抽樣抽取7人,再?gòu)闹羞x4人作為新納稅法知識(shí)宣講員,用表示抽到作為宣講員的收入在元的人數(shù),表示抽到作為宣講員的收入在元的人數(shù),隨機(jī)變量,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家規(guī)定每年的日以后的天為當(dāng)年的暑假.某鋼琴培訓(xùn)機(jī)構(gòu)對(duì)位鋼琴老師暑假一天的授課量進(jìn)行了統(tǒng)計(jì),如下表所示:

授課量(單位:小時(shí))

頻數(shù)

培訓(xùn)機(jī)構(gòu)專業(yè)人員統(tǒng)計(jì)近年該校每年暑假天的課時(shí)量情況如下表:

課時(shí)量(單位:天)

頻數(shù)

(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)

1)估計(jì)位鋼琴老師一日的授課量的平均數(shù);

2)若以(1)中確定的平均數(shù)作為上述一天的授課量.已知當(dāng)?shù)厥谡n價(jià)為/小時(shí),每天的各類生活成本為/天;若不授課,不計(jì)成本,請(qǐng)依據(jù)往年的統(tǒng)計(jì)數(shù)據(jù),估計(jì)一位鋼琴老師天暑假授課利潤(rùn)不少于萬(wàn)元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右頂點(diǎn)分別為,,上頂點(diǎn)為,右焦點(diǎn)為,已知

1)證明:

2)已知直線的傾斜角為,設(shè)為橢圓上不同于,的一點(diǎn),為坐標(biāo)原點(diǎn),線段的垂直平分線交點(diǎn),過(guò)且垂直于的直線交軸于點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知兩點(diǎn)分別為橢圓的右頂點(diǎn)和上頂點(diǎn),且,右準(zhǔn)線的方程為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)的直線交橢圓于另一點(diǎn),交于點(diǎn).若以為直徑的圓經(jīng)過(guò)原點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點(diǎn),FC的焦點(diǎn),若|FA|=2|FB|,則|FA| =

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求曲線的極坐標(biāo)方程和曲線的普通方程;

2)設(shè)射線與曲線交于不同于極點(diǎn)的點(diǎn),與曲線交于不同于極點(diǎn)的點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案