(本小題滿分14分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,側(cè)棱PA的長為2,且PAABAD的夾角都等于600,PC的中點(diǎn),設(shè)
(1)試用表示出向量;
(2)求的長.
(1)
(2)
(1)∵是PC的中點(diǎn),∴

(2)


.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知棱長為1的正方體ABCD-A1B1C1D1中,E、F、M分別是A1C1、A1D和B1A上任一點(diǎn),求證:平面A1EF∥平面B1MC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方體中,是棱的中點(diǎn),在棱上.
,若二面角的余弦值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正四棱柱中,底面邊長為,側(cè)棱長為4,E,F(xiàn)分別為棱AB,CD的中點(diǎn),.則三棱錐的體積V(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知空間四面體的每條邊都等于1,點(diǎn)分別是的中點(diǎn),則等于  。       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點(diǎn),AB="4AN," M、S分別為PB,BC的中點(diǎn).以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在棱長為的正方體中,則平面與平面間的距離   (   )
      
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方體的棱長為2,分別是上的動(dòng)點(diǎn),且,確定的位置,使

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是三條不同的直線,是兩個(gè)不同的平面,下列命題為真命題的是(    )
A.若,,則
B.若,,則
C.若,,則
D.若,,,則

查看答案和解析>>

同步練習(xí)冊(cè)答案