(本小題滿分13分)某市“環(huán)保提案”對(duì)某處的環(huán)境狀況進(jìn)行了實(shí)地調(diào)研,據(jù)測(cè)定,該處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源的距離成反比,比例常數(shù)為.現(xiàn)已知相距,兩家化工廠(污染源)的污染強(qiáng)度分別為正數(shù),,它們連線上任意一點(diǎn)C處的污染指數(shù)等于兩化工廠對(duì)該處的污染指數(shù)之和.設(shè).
(1) 試將表示為的函數(shù);
(2) 若時(shí),處取得最小值,試求的值.

(1)(2)

解析試題分析:(1)設(shè)點(diǎn)C受A污染源污染指數(shù)為,
點(diǎn)C受B污染源污染指數(shù)為
其中k為比例系數(shù),且k>0,
從而點(diǎn)C處污染指數(shù).                         ……5分
(2) 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0f/d/rh4su2.png" style="vertical-align:middle;" />,所以,,=,
=0,得
當(dāng)時(shí),函數(shù)單調(diào)遞減;當(dāng)時(shí),函數(shù)單調(diào)遞增.
∴當(dāng)時(shí),函數(shù)取得最小值,又此時(shí),解得,
經(jīng)驗(yàn)證符合題意.
所以,污染源B的污染強(qiáng)度的值為.                            ……13分
考點(diǎn):本小題主要考查利用導(dǎo)數(shù)求解實(shí)際問(wèn)題中的最值問(wèn)題,考查了學(xué)生從實(shí)際問(wèn)題向數(shù)學(xué)問(wèn)題轉(zhuǎn)化的能力和分類討論思想的應(yīng)用以及運(yùn)算求解能力.
點(diǎn)評(píng):從實(shí)際問(wèn)題中抽象數(shù)學(xué)模型時(shí),一定不要忘記函數(shù)的實(shí)際定義域,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性時(shí),要把單調(diào)性說(shuō)清楚,必要時(shí)可以畫表格輔助說(shuō)明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了應(yīng)對(duì)國(guó)際原油的變化,某地建設(shè)一座油料庫(kù),F(xiàn)在油料庫(kù)已儲(chǔ)油料噸,計(jì)劃正式運(yùn)營(yíng)后的第一年進(jìn)油量為已儲(chǔ)油量的,以后每年的進(jìn)油量為上一年年底儲(chǔ)油量的,且每年運(yùn)出噸,設(shè)為正式運(yùn)營(yíng)第n年年底的儲(chǔ)油量。(其中
(1)求的表達(dá)式
(2)為應(yīng)對(duì)突發(fā)事件,該油庫(kù)年底儲(chǔ)油量不得少于噸,如果噸,該油庫(kù)能否長(zhǎng)期按計(jì)劃運(yùn)營(yíng)?如果可以請(qǐng)加以證明;如果不行請(qǐng)求出最多可以運(yùn)營(yíng)幾年。(取

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)設(shè),若方程有兩個(gè)均小于2的不同的實(shí)數(shù)根,則此時(shí)關(guān)于的不等式是否對(duì)一切實(shí)數(shù)都成立?并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函

(1)用分段函數(shù)的形式表示該函數(shù);(2)畫出該函數(shù)的圖象;(3)寫出該函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知函數(shù),在同一周期內(nèi),
當(dāng)時(shí),取得最大值;當(dāng)時(shí),取得最小值.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)若時(shí),函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)設(shè)為非負(fù)實(shí)數(shù),函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)討論函數(shù)的零點(diǎn)個(gè)數(shù),并求出零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)是奇函數(shù):
(1)求實(shí)數(shù)的值; 
(2)證明在區(qū)間上的單調(diào)遞減
(3)已知且不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義:若函數(shù)對(duì)于其定義域內(nèi)的某一數(shù),有,則稱的一個(gè)不動(dòng)點(diǎn). 已知函數(shù).
(1)當(dāng),時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意的實(shí)數(shù)b,函數(shù)恒有兩個(gè)不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若圖象上兩個(gè)點(diǎn)A、B的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且線段AB的中點(diǎn)C在函數(shù)的圖象上,求實(shí)數(shù)b的最小值.
(參考公式:若,則線段AB的中點(diǎn)坐標(biāo)為)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
計(jì)算下列各式的值:
(1);     (2) .

查看答案和解析>>

同步練習(xí)冊(cè)答案