【題目】體溫是人體健康狀況的直接反應(yīng),一般認為成年人腋下溫度T(單位:)平均在之間即為正常體溫,超過即為發(fā)熱.發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:;高熱:;超高熱(有生命危險):.某位患者因患肺炎發(fā)熱,于12日至26日住院治療.醫(yī)生根據(jù)病情變化,從14日開始,以3天為一個療程,分別用三種不同的抗生素為該患者進行消炎退熱.住院期間,患者每天上午800服藥,護士每天下午1600為患者測量腋下體溫記錄如下:

抗生素使用情況

沒有使用

使用抗生素A

使用抗生素B治療

日期

12

13

14

15

16

17

18

19

體溫(

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情況

使用抗生素C治療

沒有使用

日期

20

21

22

23

24

25

26

體溫(

38.4

38.0

37.6

37.1

36.8

36.6

36.3

I)請你計算住院期間該患者體溫不低于的各天體溫平均值;

II)在19—23日期間,醫(yī)生會隨機選取3天在測量體溫的同時為該患者進行某一特殊項目a項目的檢查,記X為高熱體溫下做a項目檢查的天數(shù),試求X的分布列與數(shù)學(xué)期望;

III)抗生素治療一般在服藥后2-8個小時就能出現(xiàn)血液濃度的高峰,開始殺滅細菌,達到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨立,請依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說明理由.

【答案】I)平均值為II)分布列見解析,.(III抗生素C治療效果最佳,理由見解析.

【解析】

I)根據(jù)所給表格,可計算體溫不低于的各天體溫平均值;

II)由題意可知X的所有可能取值為01,2,分別求得各自的概率,即可得分布列,進而求得數(shù)學(xué)期望;

III)根據(jù)三種抗生素治療后溫度的變化情況,結(jié)合平均體溫和體溫方差,即可做出判斷.

I)由表可知,該患者共6天的體溫不低于,記平均體溫為

所以,患者體溫不低于的各天體溫平均值為

(Ⅱ)X的所有可能取值為01,2

,

,

X的分布列為:

X

0

1

2

所以

(Ⅲ)抗生素C治療效果最佳,理由如下:

抗生素B使用期間先連續(xù)兩天降溫后又回升,抗生素C使用期間持續(xù)降溫共計,說明抗生素C降溫效果最好,故抗生素C治療效果最佳

抗生素B治療期間平均體溫,方差約為0.0156抗生素C平均體溫,方差約為0.1067,抗生素C治療期間體溫離散程度大,說明存在某個時間節(jié)點降溫效果明顯,故抗生素C治療效果最佳.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線焦點為,過上一點作切線,交軸于點,過點作直線于點.

1)證明:

2)設(shè)直線,的斜率為,的面積為,若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試在①,②,③三個條件中選兩個條件補充在下面的橫線處,使得ABCD成立,請說明理由,并在此條件下進一步解答該題:

如圖,在四棱錐中,,底ABCD為菱形,若__________,且,異面直線PBCD所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在等腰直角中,斜邊,D的中點,將沿折疊得到如圖(2)所示的三棱錐,若三棱錐的外接球的半徑為,則_________.

圖(1 圖(2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=ax2+bx-ln x的導(dǎo)函數(shù)的零點分別為1和2.

(I) 求a , b的值;

(Ⅱ)若當時,恒成立, 求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,側(cè)面ABB1A1為菱形,DAB的中點,為等腰三角形,∠ACB,∠ABB1,且ABB1C.

1)證明:CD⊥平面ABB1A1

2)求CD與平面A1BC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形是梯形,如圖,,,,的中點,以為折痕把折起,使點到達點的位置(如圖2),且

1)求證:平面平面;

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南北朝時期的偉大數(shù)學(xué)家祖暅在數(shù)學(xué)上有突出貢獻,他在實踐的基礎(chǔ)上提出祖暅原理:“冪勢既同,則積不容異”.其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得兩個截面的面積總相等,那么這兩個幾何體的體積相等.如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為、,被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則命題:“、相等”是命題總相等”的(

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案