精英家教網 > 高中數學 > 題目詳情

【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音、短信、視頻、圖片和文字,一經推出便風靡全國,甚至涌現出一批在微信的朋友圈內銷售商品的人(被稱為微商).為了調查每天微信用戶使用微信的時間,某經銷化妝品的微商在一廣場隨機采訪140位市民進行調查,其中每天玩微信超過6小時的用戶稱為微信控,否則稱其為非微信控, 調查結果統(tǒng)計如下:

微信控

非微信控

合計

女性

60

男性

30

合計

70

140

1)根據以上數據,把表格中的數據填寫完整;

2)利用(1)完成的表格數據回答下列問題:

①是否在犯錯誤的概率不超過0.001的前提下認為微信控性別有關;

②已知在被調查的女性微信控市民中有5位退休老人,其中2位是教師,現從這5位退休老人中隨機抽取2人,求至少有1位老師的概率.

附表:其中

P(K2k)

0.050

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

【答案】1)表格見解析;(2)①能;②

【解析】

1)完善列聯表即可;

2)①計算的值,并與臨界值比較,可得結論;

②利用列舉法計算基本事件個數,以及“至少有1位老師”這一事件所含基本事件個數,即可求出相應的概率.

解:(1

微信控

非微信控

合計

女性

40

20

60

男性

30

50

80

合計

70

70

140

2)①

能在犯錯誤的概率不超過0.001的前提下認為微信控性別有關.

②記2位老師為,另3位老人為,

5位退休老人中隨機抽取2人的情況有:

,,,,,,共10種,

其中至少有1位老師的情況有:

,,,,,,,共7種,

故至少有1位老師的概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我國于201510月宣布實施普遍二孩政策,為了解戶籍、性別對生育二胎選擇傾向的影響,某地從育齡群體中隨機抽取了容量為140的調查樣本,其中城鎮(zhèn)戶籍與農村戶籍各70人;男性60人,女性80人,繪制的不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數比例圖如圖所示,其中陰影部分表示傾向選擇生育二胎的對應比例,則下列敘述正確的是(

A.是否傾向選擇生育二胎與戶籍有關

B.是否傾向選擇生育二胎與性別有關

C.調查樣本中傾向選擇生育二胎的群群中,男性人數與女性人數相同

D.傾向選擇不生育二胎的群群中,農村戶籍人數多于城鎮(zhèn)戶籍人數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,在新高考改革中,打破文理分科的“”模式初露端倪,其中語、數、外三門課為必考科目,剩下三門為選考科目選考科目成績采用“賦分制”,即原始分數不直接用,而是按照學生分數在本科目考試的排名來劃分等級并以此打分得到最后得分,假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體、分別賦分分、分、分、分,為了讓學生們體驗賦分制計算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單料全班排名),知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學成績(滿分分)莖葉圖如圖所示,小明同學在這次考試中物理分,化學多分.

(1)采用賦分制后,求小明物理成績的最后得分;

(2)若小明的化學成績最后得分為分,求小明的原始成績的可能值;

(3)若小明必選物理,其他兩科從化學、生物、歷史、地理、政治五科中任選,求小明此次考試選考科目包括化學的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為考察某動物疫苗預防某種疾病的效果,現對200只動物進行調研,并得到如下數據:

未發(fā)病

發(fā)病

合計

未注射疫苗

20

60

80

注射疫苗

80

40

120

合計

100

100

200

(附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

則下列說法正確的:(

A.至少有99.9%的把握認為“發(fā)病與沒接種疫苗有關”

B.至多有99%的把握認為“發(fā)病與沒接種疫苗有關”

C.至多有99.9%的把握認為“發(fā)病與沒接種疫苗有關”

D.“發(fā)病與沒接種疫苗有關”的錯誤率至少有0.01%

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在棱長為的正方體中,是面對角線上兩個不同的動點.以下四個命題:①存在兩點,使;②存在兩點,使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個面上的正投影的面積的和為定值.其中為真命題的是____.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知、是橢圓上關于軸對稱的兩點,的左焦點,.

1)求橢圓的標準方程;

2)斜率為的直線過點,和橢圓相交于兩點,,.坐標是,設的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,點,是曲線上的任意一點,動點滿足

1)求點的軌跡方程;

2)經過點的動直線與點的軌跡方程交于兩點,在軸上是否存在定點(異于點),使得?若存在,求出的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓,過的直線與橢圓相交于兩點,且與軸相交于.

1)若,求直線的方程;

2)設關于軸的對稱點為,證明:直線軸上的定點.

查看答案和解析>>

同步練習冊答案