五位同學(xué)圍成一圈依序循環(huán)報(bào)數(shù),規(guī)定:
①第一位同學(xué)首次報(bào)出的數(shù)為1.第二位同學(xué)首次報(bào)出的數(shù)也為1,之后每位同學(xué)所報(bào)出的數(shù)都是前兩位同學(xué)所報(bào)出的數(shù)之和;
②若報(bào)出的是為3的倍數(shù),則報(bào)該數(shù)的同學(xué)需拍手一次,
當(dāng)?shù)?0個(gè)數(shù)被報(bào)出時(shí),五位同學(xué)拍手的總次數(shù)為           。
7
這樣得到的數(shù)列這是歷史上著名的數(shù)列,叫斐波那契數(shù)列.尋找規(guī)律是解決問題的根本,否則,費(fèi)時(shí)費(fèi)力.首先求出這個(gè)數(shù)列的每一項(xiàng)除以3所得余數(shù)的變化規(guī)律,再求所求就比較簡(jiǎn)單了.
這個(gè)數(shù)列的變化規(guī)律是:從第三個(gè)數(shù)開始遞增,且是前兩項(xiàng)之和,那么有1、1、2、3、5、
8、13、21、34、55、89、144、233、377、610、987……分別除以3得余數(shù)分別是1、1、2、0、2、2、1、0、1、1、2、0、2、2、1、0……由此可見余數(shù)的變化規(guī)律是按1、1、2、0、2、2、1、0循環(huán),周期是8.在這一個(gè)周期內(nèi)第四個(gè)數(shù)和第八個(gè)數(shù)都是3的倍數(shù),所以在三個(gè)周期內(nèi)共有6個(gè)報(bào)出的數(shù)是三的倍數(shù),后面6個(gè)報(bào)出的數(shù)中余數(shù)是1、1、2、0、2、2,只有一個(gè)是3的倍數(shù),故3的倍數(shù)總共有7個(gè),也就是說拍手的總次數(shù)為7次.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
等差數(shù)列{}的前n項(xiàng)和記為Sn.已知(Ⅰ)求通項(xiàng);
(Ⅱ)若Sn=242,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
已知數(shù)列、滿足,,,。
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式;
(3)數(shù)列滿足,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題13分)已知等差數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前20項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

兩等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若
Sn
Tn
=
2n+3
3n+1
,則
a7
b7
=( 。
A.
33
46
B.
17
22
C.
29
40
D.
31
43

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等差數(shù)列{an}中,a1+a4+a7=15,a2a4a6=45,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列{an}中,其前n項(xiàng)和是Sn,S10=130,則a3+a8的值為( 。
A.12B.26C.36D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等比數(shù)列的前n項(xiàng)和為,且4,2,成等差數(shù)列。若=1,則="(    " )
A.7 B.8C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)等差數(shù)列的前項(xiàng)和為.若          .

查看答案和解析>>

同步練習(xí)冊(cè)答案