在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2
分析:利用余弦定理表示出cosA,將已知第一個(gè)等式代入求出cosA的值,確定出A度數(shù),再利用正弦定理化簡(jiǎn)第二個(gè)等式,求出sinB的值,確定出B的度數(shù),進(jìn)而求出C的度數(shù),確定出三角形ABC形狀,即可做出判斷.
解答:解:∵b2+c2-a2=
3
bc,
∴cosA=
b2+c2-a2
2bc
=
3
2
,
∴A=30°,
由正弦定理化簡(jiǎn)b=
3
a,得到sinB=
3
sinA=
3
2
,
∴B=60°或120°,
當(dāng)B=60°時(shí),C=90°,此時(shí)△ABC為直角三角形,
得到a2+b2=c2,2a=c;
當(dāng)B=120°時(shí),C=30°,此時(shí)△ABC為等腰三角形,
得到a=c,
綜上,b=c不一定成立,
故選:B.
點(diǎn)評(píng):此題考查了正弦、余弦定理,以及直角三角形與等腰三角形的性質(zhì),熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案