題目列表(包括答案和解析)

 0  447018  447026  447032  447036  447042  447044  447048  447054  447056  447062  447068  447072  447074  447078  447084  447086  447092  447096  447098  447102  447104  447108  447110  447112  447113  447114  447116  447117  447118  447120  447122  447126  447128  447132  447134  447138  447144  447146  447152  447156  447158  447162  447168  447174  447176  447182  447186  447188  447194  447198  447204  447212  447348 

1.[2005年山東省臨沂市數(shù)學(xué)模擬試題(文史類)]

   如圖所示,都是等腰直角三角形,且它們所在的平面互相垂直,

   (I)求異面直線AD、BC所成的角。

   (II)設(shè)P是線段AB上的動(dòng)點(diǎn),問P、B兩點(diǎn)間的距離多少時(shí)?所在平面成角;

試題詳情

7.(江安中學(xué))如圖,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M為AA1的中點(diǎn),P是BC上一點(diǎn),且由P沿棱柱側(cè)面經(jīng)過棱CC1到M點(diǎn)的最短路線長(zhǎng)為,設(shè)這條最短路線與C1C的交點(diǎn)為N。求

4)     該三棱柱的側(cè)面展開圖的對(duì)角線長(zhǎng);

5)     PC和NC的長(zhǎng);

6)     平面NMP和平面ABC所成二面角(銳角)的大小(用反三角函數(shù)表示)

正解:①正三棱柱ABC-A1B1C1的側(cè)面展開圖是一個(gè)長(zhǎng)為9,寬為4的矩形,其對(duì)角線長(zhǎng)為

②如圖1,將側(cè)面BC1旋轉(zhuǎn)使其與側(cè)面AC1在同一平面上,點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1的位置,連接MP1,則MP1就是由點(diǎn)P沿棱柱側(cè)面經(jīng)過CC1到點(diǎn)M的最短路線。

設(shè)PC=,則P1C=,

③連接PP1(如圖2),則PP1就是NMP與平面ABC的交線,作NH于H,又CC1平面ABC,連結(jié)CH,由三垂線定理得,。

誤解:①不會(huì)找 的線段在哪里。

②不知道利用側(cè)面BCC1 B1展開圖求解。

③不會(huì)找二面角的平面角。

試題詳情

6.(江安中學(xué))如圖在三棱柱ABC-中,已知底面ABC是底角等于,底邊AC=的等腰三角形,且,面與面ABC成,交于點(diǎn)E。

1)     求證:

2)     求異面直線AC與的距離;

3)     求三棱錐的體積。

正解:①證:取AC中點(diǎn)D,連ED,

//

是底角等于的等腰,

②解:由①知

是異面直線AC與的距離,為

③連

誤解:求體積,不考慮用等積法,有時(shí),硬算導(dǎo)致最后錯(cuò)解。

試題詳情

5.(蒲中)斜三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為a的正三角形,側(cè)棱長(zhǎng)等于b,一條側(cè)棱AA1與底面相鄰兩邊AB、AC都成450角,求這個(gè)三棱柱的側(cè)面積。

解:過點(diǎn)B作BM⊥AA1于M,連結(jié)CM,在△ABM和△ACM中,∵AB=AC,∠MAB=∠MAC=450,MA為公用邊,∴△ABM≌△ACM,∴∠AMC=∠AMB=900,∴AA1⊥面BHC,即平面BMC為直截面,又BM=CM=ABsin450=a,∴BMC周長(zhǎng)為2xa+a=(1+)a,且棱長(zhǎng)為b,∴S側(cè)=(1+)ab

點(diǎn)評(píng):本題易錯(cuò)點(diǎn)一是不給出任何證明,直接計(jì)算得結(jié)果;二是作直截面的方法不當(dāng),即“過BC作平面與AA1垂直于M”;三是由條件“∠A1AB=∠A1AC∠AA1在底面ABC上的射影是∠BAC的平分線”不給出論證。

試題詳情

4.(一中)點(diǎn)是邊長(zhǎng)為4的正方形的中心,點(diǎn),分別是的中點(diǎn).沿對(duì)角線把正方形折成直二面角D-AC-B

(Ⅰ)求的大。

(Ⅱ)求二面角的大。

解法一:(Ⅰ)如圖,過點(diǎn)EEGAC,垂足為G,過點(diǎn)FFHAC,垂足為H,則,

 

因?yàn)槎娼?i style='mso-bidi-font-style:normal'>D-AC-B為直二面角,

 

又在中,,

. 

(Ⅱ)過點(diǎn)GGM垂直于FO的延長(zhǎng)線于點(diǎn)M,連EM

∵二面角D-AC-B為直二面角,∴平面DAC⊥平面BAC,交線為AC,又∵EGAC,∴EG⊥平面BAC.∵GMOF,由三垂線定理,得EMOF

就是二面角的平面角.

在RtEGM中,,,,

.∴

所以,二面角的大小為

解法二:(Ⅰ)建立如圖所示的直角坐標(biāo)系O-xyz,

(Ⅱ)設(shè)平面OEF的法向量為

解得

所以,

又因?yàn)槠矫?i style='mso-bidi-font-style:normal'>AOF的法向量為,  

.∴

所以,二面角的大小為

試題詳情

3.(石莊中學(xué))如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=5,AD=8,AA1=4,M為B1C1上一點(diǎn),且B1M=2,點(diǎn)N在線段A1D上,A1D⊥AN,求:  (1) ;

    (2) 直線AD與平面ANM所成的角的大小;

    (3) 平面ANM與平面ABCD所成角(銳角)的大小.

    解:(1) 以A為原點(diǎn),AB、AD、AA1所在直線    為x軸,y軸,z軸.

    則D(0,8,0),A1 (0,0,4),M(5,2,4)

    ) 

   ∵

    (2) 由(1)知A1D⊥AM,又由已知A1D⊥AN,平面AMN,垂足為N.

    因此AD與平面所成的角即是

    易知

    (3) ∵平面ABCD,A1N平面AMN,

   ∴分別成為平面ABCD和平面AMN的法向量。

    設(shè)平面AMN與平面ABCD所成的角(銳角)為,則

   

試題詳情

2.   (如中)一個(gè)棱長(zhǎng)為6cm的密封正方體盒子中放一個(gè)半徑為1cm的小球,無論怎樣搖動(dòng)盒子,求小球在盒子不能到達(dá)的空間的體積。

錯(cuò)解:認(rèn)為是正方體的內(nèi)切球。用正方體的體積減去內(nèi)切球的體積。

錯(cuò)誤原因是空間想像力不夠。

正解:在正方體的8個(gè)頂點(diǎn)處的單位立方體空間內(nèi),小球不能到達(dá)的空間為:,除此之外,在以正方體的棱為一條棱的12個(gè)的正四棱柱空間內(nèi),小球不能到達(dá)的空間共為。其他空間小球均能到達(dá)。故小球不能到達(dá)的空間體積為:。

試題詳情

1.    (如中)由平面外一點(diǎn)P引平面的三條相等的斜線段,斜足分別為ABC,O為⊿ABC的外心,求證:。

錯(cuò)解:因?yàn)镺為⊿ABC的外心,所以O(shè)A=OB=OC,又因?yàn)镻A=PB=PC,PO公用,所以⊿POA,⊿POB,⊿POC都全等,所以POA=POB=POC=RT,所以

錯(cuò)解分析:上述解法中POA=POB=POC=RT,是對(duì)的,但它們?yōu)槭裁词侵苯悄兀窟@里缺少必要的證明。

正解:取BC的中點(diǎn)D,連PD,OD,

試題詳情

29.(案中)點(diǎn)P在直徑為2的球面上,過P作兩兩垂直的三條弦,若其中一條弦長(zhǎng)是另一條弦長(zhǎng)的2倍,則這三條弦長(zhǎng)之和為最大值是     

正確答案:

錯(cuò)誤原因:找不到解題思路

試題詳情

28.(案中)在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB和AD的中點(diǎn),則點(diǎn)A1到平面為EF的距離為       

正確答案:

錯(cuò)誤原因:不少學(xué)生能想到用等積法解,但運(yùn)算存在嚴(yán)重問題。

試題詳情


同步練習(xí)冊(cè)答案