【題目】如圖,園林小組的同學(xué)用一段長米的籬笆圍成一個一邊靠墻的矩形菜園墻的長為米,設(shè)的長為米,的長為米.

1)①寫出的函數(shù)關(guān)系是:

②自變量的取值范圍是

2)園林小組的同學(xué)計劃使矩形菜園的面積為平方米,試求此時邊的長.

【答案】1)①y=16-2x;②3.5x8;(2AB的長為5米或3米.

【解析】

1)①根據(jù)籬笆的長度是16米列出函數(shù)關(guān)系式;

②根據(jù)x、y都是正數(shù)寫出自變量的取值范圍;

2)由矩形的面積公式列出方程并解答.

解:(1)①寫出yx的函數(shù)關(guān)系是:y=16-2x

故答案是:y=16-2x;

②∵x0,9y0,

3.5x8,

故答案是:3.5x8

2)依題意得:x16-2x=30,

解得x1=5x2=3,

則園林小組的同學(xué)計劃使矩形菜園的面積為30平方米,此時邊AB的長為5米或3米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+cx軸于A(﹣1,0),B(3,0),交y軸的負(fù)半軸于C,頂點為D.下列結(jié)論:①2a+b=0;②2c<3b;③當(dāng)m≠1時,a+b<am2+bm;④當(dāng)△ABD是等腰直角三角形時,則a= ;⑤當(dāng)△ABC是等腰三角形時,a的值有3個.其中正確的有( 。﹤

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,直線MCO相切于點C.過點AMC的垂線,垂足為D,線段ADO相交于點E

1)求證:AC是∠DAB的平分線;

2)若AB10,AC4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象相交于A(﹣1,n)、B2,﹣1)兩點,與y軸相交于點C,BD垂直于y軸于點D

1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;

2)求△ABD的面積;

3)若Mx,y)、Nx,y)是反比例函數(shù)y上的兩點,當(dāng)xx0時,直接寫出yy的大小關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:對于給定的兩個函數(shù),任取自變量x的一個值,當(dāng)x0時,它們對應(yīng)的函數(shù)值互為相反數(shù);當(dāng)x0時,它們對應(yīng)的函數(shù)值相等,我們稱這樣的兩個函數(shù)互為相關(guān)函數(shù).例如:一次函數(shù)y=x1,它的相關(guān)函數(shù)為

1)已知點A(﹣5,8)在一次函數(shù)y=ax3的相關(guān)函數(shù)的圖象上,求a的值;

2)已知二次函數(shù)

①當(dāng)點Bm)在這個函數(shù)的相關(guān)函數(shù)的圖象上時,求m的值;

②當(dāng)﹣3x3時,求函數(shù)的相關(guān)函數(shù)的最大值和最小值;

3)在平面直角坐標(biāo)系中,點M,N的坐標(biāo)分別為(﹣1),(1}),連結(jié)MN.直接寫出線段MN與二次函數(shù)的相關(guān)函數(shù)的圖象有兩個公共點時n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,D為AC延長線上一點,連接BD,AE⊥BD于點E.

(1)記△ABC得外接圓為⊙0,

①請用文字描述圓心0的位置;

②求證:點E一定在⊙0上.

(2)將射線AE繞點A順時針旋轉(zhuǎn)45°后,所得到的射線與BD延長線交于點F,連接CF,CE.

①依題意補(bǔ)全圖形;

②用等式表示線段AF,CE,BE的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓的直徑,O為圓心,AD、BD是半圓的弦,且

判斷直線PD是否為的切線,并說明理由;

如果,,求PA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+3x軸、y軸分別交于B、C兩點,經(jīng)過B、C兩點的拋物線yx2+bx+cx軸的另一個交點為A,頂點為P

1)求該拋物線的解析式;

2)當(dāng)0x3時,在拋物線上求一點E,使CBE的面積有最大值;

3)在該拋物線的對稱軸上是否存在點M,使以CP、M為頂點的三角形為等腰三角形?若存在,請寫出所符合條件的點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察等式:1+2+22231;1+2+22+232411+2+22+23+24251;若1+2+22+…+292101m,則用含 m 的式子表示 211+212 + …+218+219 的結(jié)果是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案