【題目】綜合與實踐

紙是我們學習工作最常用的紙張之一, 其長寬之比是,我們定義:長寬之比是的矩形紙片稱為標準紙

操作判斷:

如圖1所示,矩形紙片是一張標準紙,將紙片折疊一次,使點重合,再展開,折痕邊于點邊于點,若的長,

如圖2,在的基礎上,連接折痕于點,連接判斷四邊形的形狀,并說明理由.

探究發(fā)現(xiàn):

如圖3所示,在(1)(2)的基礎上,展開紙片后,將紙片再折疊一次,使點與點重合,再展開,痕邊于點,交邊于點也是點.然后將四邊形剪下,探究紙片是否為標準紙,說明理由.

【答案】(1) 長為 ;(2) 四邊形是菱形,理由見解析;(3) 紙片標準紙",理由見解析

【解析】

1,則,根據(jù)四邊形是矩形,得到,由折疊得,設,則,在中,,可得即可求解.

2)當頂點與點重合時,折痕垂直平分,可得,在矩形中,,得到,在中,,可得,,再根據(jù),可得四邊形是平行四邊形,最后根據(jù),即可求證平行四邊形是菱形.

(3)由可知,,同理可知,,可得四邊形是平行四邊形,根據(jù),得到,再根據(jù),可得,進而得到,同理可得,,根據(jù)四邊形是矩形,可得,,四邊形是矩形,,,,即可求證紙片標準紙"

解:

四邊形是矩形

由折疊得

,則

中,

答:長為

四邊形是菱形.

理由:當頂點與點重合時,折痕垂直平分

,

在矩形中,

中,

四邊形是平行四邊形

平行四邊形是菱形.

紙片標準紙

理由如下:由可知,

同理可知,

四邊形是平行四邊形

同理可得,

四邊形是矩形,

,

四邊形是矩形.

.

.

紙片標準紙".

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】碑林書法社小組用的書法練習紙(毛邊紙可以到甲商店購買,也可以到乙商店購買已知兩商店的標價都是每刀20元(每刀100張),但甲商店的優(yōu)惠條件是:若購買不超過10刀,則按標價買,購買10以上,從第11刀開始按標價的七折賣;乙商店的優(yōu)惠條件是:購買一只9元的毛筆,從第一刀開始按標價的八五折賣.購買刀數(shù)為(刀),在甲商店購買所需費用為元,在乙商店購買所需費用為元.

1)寫出之間的函數(shù)關系式.

2)求在乙商店購買所需總費用小于甲商店購買所需總費用時的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在歌唱比賽中,一位歌手分別轉動如下的兩個轉盤(每個轉盤都被分成3等份)一次,根據(jù)指針指向的歌曲名演唱兩首曲目.

(1)轉動轉盤時,該轉盤指針指向歌曲“3”的概率是 ;

(2)若允許該歌手替換他最不擅長的歌曲“3”,即指針指向歌曲“3”時,該歌手就選擇自己最擅長的歌曲“1”, 請用樹形圖或列表法中的一種,求他演唱歌曲“1”和“4”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的頂點的坐標為

(1),的值;

(2)已知點為拋物線上異于的一點,且點橫、縱坐標相等,軸上任意一點,當取最小值時,求出點坐標和此時的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】內接于,,連接;

(1)如圖1,連接并延長交于點,連接,求證:;

(2)如圖2,延長于點H,點F為BH上一點,連接AF,若,求證:

(3)在(2)的條件下,如圖3,點E為AB上一點,點D為上一點,連接、,若,若,,,連接,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,給定一個正方形,要通過畫線將其分割成若干個互不重疊的正方形.第1次畫線分割成4個互不重疊的正方形,得到圖2;第2次畫線分割成7個互不重疊的正方形,得到圖3……以后每次只在上次得到圖形的左上角的正方形中畫線.

嘗試:第3次畫線后,分割成    個互不重疊的正方形;

4次畫線后,分割成    個互不重疊的正方形.

發(fā)現(xiàn):第n次畫線后,分割成    個互不重疊的正方形;并求第2020次畫線后得到互不重疊的正方形的個數(shù).

探究:若干次畫線后,能否得到1001個互不重疊的正方形?若能,求出是第幾次畫線后得到的;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的對稱軸是.且過點(,0),有下列結論:①abc0;②a2b+4c=0;③25a10b+4c=0;④2c-3b0;⑤ab≥mamb)(m≠-1);其中所有正確的結論是(

A.①②③B.①③④C.①③④⑤D.②④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形是正方形,點的坐標是

(1)正方形的邊長為 ,點的坐標是 ;

(2)將正方形繞點順時針旋轉,點,旋轉后的對應點為,,求點的坐標及旋轉后的正方形與原正方形的重疊部分的面積;

(3)動點從點出發(fā),沿折線方向以1個單位/秒的速度勻速運動,同時,另一動點從點出發(fā),沿折線方向以2個單位/秒的速度勻速運動,運動時間為秒,當它們相遇時同時停止運動,當為等腰三角形時,求出的值(直接寫出結果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,和矩形的邊都在直線,以點為圓心,24為半徑作半圓,分別交直線兩點.已知: ,,矩形自右向左在直線上平移,當點到達點,矩形停止運動.在平移過程中,設矩形對角線與半圓的交點為 (為半圓上遠離點的交點).

1)如圖2,若與半圓相切,求的值;

2)如圖3,當與半圓有兩個交點時,求線段的取值范圍;

3)若線段的長為20,直接寫出此時的值.

查看答案和解析>>

同步練習冊答案