【題目】如圖1,給定一個(gè)正方形,要通過畫線將其分割成若干個(gè)互不重疊的正方形.第1次畫線分割成4個(gè)互不重疊的正方形,得到圖2;第2次畫線分割成7個(gè)互不重疊的正方形,得到圖3……以后每次只在上次得到圖形的左上角的正方形中畫線.
嘗試:第3次畫線后,分割成 個(gè)互不重疊的正方形;
第4次畫線后,分割成 個(gè)互不重疊的正方形.
發(fā)現(xiàn):第n次畫線后,分割成 個(gè)互不重疊的正方形;并求第2020次畫線后得到互不重疊的正方形的個(gè)數(shù).
探究:若干次畫線后,能否得到1001個(gè)互不重疊的正方形?若能,求出是第幾次畫線后得到的;若不能,請說明理由.
【答案】嘗試:10,13;發(fā)現(xiàn):(3n+1),6061;探究:不能,理由見解析.
【解析】
嘗試:利用前幾次發(fā)現(xiàn)的規(guī)律:1×4-0,2×4-1,3×4-2,…解答即可;
發(fā)現(xiàn):由“嘗試”的規(guī)律,寫出經(jīng)過n次分割后的式子,整理即可,把n=2020代入整理后的式子中即可求解;
探究:利用“發(fā)現(xiàn)”中的式子建立方程即可解決問題.
嘗試:第一次1×4-0=4張,
第二次2×4-1=7張,
第三次3×4-2=10張,
第四次4×4-3=13張;
故答案為:10, 13;
發(fā)現(xiàn):由“嘗試”可知經(jīng)過次分割后,共得到張紙片;
當(dāng)n=2020時(shí),3n+1=6061,
即第2020次畫線后得到互不重疊的正方形的個(gè)數(shù)是6061,
故答案為:(3n+1),6061;
探究:不能.
設(shè)每次畫線后得到互不重疊的正方形的個(gè)數(shù)為m,則m=3n+1.
若m=1001,則1001=3n+1.解得.
這個(gè)數(shù)不是整數(shù),所以不能.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在三邊互不相等的△ABC中, D,E,F分別是AB,AC,BC邊的中點(diǎn).連接DE,過點(diǎn)C作CM∥AB交DE的延長線于點(diǎn)M,連接CD、EF交于點(diǎn)N,則圖中全等三角形共有( )
A.3對B.4對C.5對D.6對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同時(shí)擲兩枚質(zhì)地均勻的骰子,每枚骰子的六個(gè)面上分別刻有1到6的點(diǎn)數(shù),則這兩枚骰子向上的一面出現(xiàn)的點(diǎn)數(shù)不相同的概率為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在矩形AEFD中,點(diǎn)C為EF上一點(diǎn),點(diǎn)B為FE的延長線上一點(diǎn),連接CD、AB,.
(1)如圖1,求證:;
(2)如圖2,連接BD、AC交于點(diǎn),若,在不添加任何輔助線的情況下,請直接寫出圖2中四個(gè)直角三角形,使寫出的每個(gè)三角形的面積等于四邊形的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
紙是我們學(xué)習(xí)工作最常用的紙張之一, 其長寬之比是,我們定義:長寬之比是的矩形紙片稱為“標(biāo)準(zhǔn)紙”.
操作判斷:
如圖1所示,矩形紙片是一張“標(biāo)準(zhǔn)紙”,將紙片折疊一次,使點(diǎn)與重合,再展開,折痕交邊于點(diǎn)交邊于點(diǎn),若求的長,
如圖2,在的基礎(chǔ)上,連接折痕交于點(diǎn),連接判斷四邊形的形狀,并說明理由.
探究發(fā)現(xiàn):
如圖3所示,在(1)和(2)的基礎(chǔ)上,展開紙片后,將紙片再折疊一次,使點(diǎn)與點(diǎn)重合,再展開,痕交邊于點(diǎn),交邊于點(diǎn)交也是點(diǎn).然后將四邊形剪下,探究紙片是否為“標(biāo)準(zhǔn)紙”,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=-x2+x+c(-2020≤x≤1)的圖象記為L1,最大值為M1;函數(shù)y=-x2+2cx+1(1≤x≤2020)的圖象記為L2,最大值為M2.L1的右端點(diǎn)為A,L2的左端點(diǎn)為B,L1,L2合起來的圖形記為L.
(1)當(dāng)c=1時(shí),求M1,M2的值;
(2)若把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“美點(diǎn)”,當(dāng)點(diǎn)A,B重合時(shí),求L上“美點(diǎn)”的個(gè)數(shù);
(3)若M1,M2的差為,直接寫出c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的部分商業(yè)連鎖店進(jìn)行評估,將抽取的格商業(yè)連鎖店按照評估成績分成了A、B、C、D四個(gè)等級(jí),并繪制了如圖不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)本次評估隨機(jī)抽取了 家商業(yè)連鎖店;
(2)請補(bǔ)充完整扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,并在圖中標(biāo)注相應(yīng)數(shù)據(jù);
(3)從A、B兩個(gè)等級(jí)的商業(yè)連鎖店中任選2家介紹營銷經(jīng)驗(yàn),請用列表或畫樹狀圖的方法求其中至少有一家是A等級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的弦,直線MN與⊙O相切于點(diǎn)C,過點(diǎn)B作BD⊥MN于點(diǎn)D.
(1)求證:∠ABC=∠CBD;(2)若BC=4,CD=4,則⊙O的半徑是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組的同學(xué)們對函數(shù)的圖象和性質(zhì)進(jìn)行了探究,已知時(shí),函數(shù)的圖象的對稱軸為直線,頂點(diǎn)在軸上,與軸的交點(diǎn)坐標(biāo)為,探究過程如下,請補(bǔ)充過程:
(1) , , .
(2)在給出的平面直角坐標(biāo)系中,畫出函數(shù)圖象,并寫出這個(gè)函數(shù)的一條性質(zhì): .
(3)進(jìn)一步探究函數(shù)圖象并解決問題:
①若有三個(gè)實(shí)數(shù)解,則的取值范圍為: .
②若函數(shù)的圖象與該函數(shù)有三個(gè)交點(diǎn),則的取值范圍為: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com