【題目】(1)數(shù)軸上有A、B兩點(diǎn),若A點(diǎn)對(duì)應(yīng)的數(shù)是﹣2,且A、B兩點(diǎn)間的距離為3,則點(diǎn)B對(duì)應(yīng)的數(shù)是________;
(2)已知線段AB=12cm,直線AB上有一點(diǎn)C,且BC=4cm,M是AC的中點(diǎn),AM的長為________;
(3)已知∠AOB=3∠BOC,∠BOC=30°,則∠AOC=________;
(4)已知等腰三角形兩邊長為17、8,求三角形的周長.
【答案】(1)-5或1;(2)8cm或4cm;(3)120°或60°;(4)42.
【解析】
(1)點(diǎn)A對(duì)應(yīng)的數(shù)是-2,且A、B兩點(diǎn)的距離為3,設(shè)點(diǎn)B對(duì)應(yīng)的數(shù)為x,則有|-2-x|=3,繼而即可求出答案;
(2)考慮到A、B、C三點(diǎn)之間的位置關(guān)系的多種可能,即點(diǎn)C在線段AB的延長線上或點(diǎn)C在線段AB上;
(3)分兩種情況討論:當(dāng)OC在∠AOB的外側(cè)時(shí),當(dāng)OC在∠AOB的內(nèi)側(cè)時(shí),利用角的和差關(guān)系進(jìn)行計(jì)算;
(4)根據(jù)8和17可分別作等腰三角形的腰,結(jié)合三邊關(guān)系定理,分別討論求解.
(1)設(shè)點(diǎn)B對(duì)應(yīng)的數(shù)為x,
由題意得:|-2-x|=3,
解得:x=-5或1,
故答案為:-5或1;
(2)①當(dāng)點(diǎn)C在線段AB的延長線上時(shí),AC=AB+BC=16cm,
∵M是線段AC的中點(diǎn),
∴AM=AC=8cm;
②當(dāng)點(diǎn)C在線段AB上時(shí),AC=AB-BC=8cm,
M是線段AC的中點(diǎn),
∴AM=AC=4cm.
故答案為:8cm或4cm;
(3)∵∠BOC=30°,∠AOB=3∠BOC,
∴∠AOB=3×30°=90°,
①當(dāng)OC在∠AOB的外側(cè)時(shí),
∠AOC=∠AOB+∠BOC=90°+30°=120°;
②當(dāng)OC在∠AOB的內(nèi)側(cè)時(shí),
∠AOC=∠AOB-∠BOC=90°-30°=60°,
故答案為:120°或60°;
(4)由題意可知,
若三邊長為17、17、8,此時(shí)8+17>17,周長為42;
若三邊長為17、8、8,此時(shí)8+8<17,無法圍成三角形,此情況舍去;
故等腰三角形的周長為42.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0)
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,
(2)畫出將△ABC繞原點(diǎn)O按逆時(shí)針旋轉(zhuǎn)90°所得的△A2B2C2,
(3)△A1B1C1與△A2B2C2成軸對(duì)稱圖形嗎?若成軸對(duì)稱圖形,畫出所有的對(duì)稱軸并寫出對(duì)稱軸;
(4)△A1B1C1與△A2B2C2成中心對(duì)稱圖形嗎?若成中心對(duì)稱圖形,寫出所有的對(duì)稱中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】六一前夕,某幼兒園園長到廠家選購A、B兩種品牌的兒童服裝,每套A品牌服裝進(jìn)價(jià)比B品牌服裝每套進(jìn)價(jià)多25元,用2000元購進(jìn)A種服裝數(shù)量是用750元購進(jìn)B種服裝數(shù)量的2倍.
求A、B兩種品牌服裝每套進(jìn)價(jià)分別為多少元?
該服裝A品牌每套售價(jià)為130元,B品牌每套售價(jià)為95元,服裝店老板決定,購進(jìn)B品牌服裝的數(shù)量比購進(jìn)A品牌服裝的數(shù)量的2倍還多4套,兩種服裝全部售出后,可使總的獲利超過1200元,則最少購進(jìn)A品牌的服裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線的頂點(diǎn)A的坐標(biāo)為(1,4),拋物線與x軸相交于B、C兩點(diǎn),與y軸交于點(diǎn)E(0,3).
(1)求拋物線的表達(dá)式;
(2)已知點(diǎn)F(0,﹣3),在拋物線的對(duì)稱軸上是否存在一點(diǎn)G,使得EG+FG最小,如果存在,求出點(diǎn)G的坐標(biāo);如果不存在,請(qǐng)說明理由.
(3)如圖2,連接AB,若點(diǎn)P是線段OE上的一動(dòng)點(diǎn),過點(diǎn)P作線段AB的垂線,分別與線段AB、拋物線相交于點(diǎn)M、N(點(diǎn)M、N都在拋物線對(duì)稱軸的右側(cè)),當(dāng)MN最大時(shí),求△PON的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個(gè)問題:
如圖1,△ABC中,∠ACB=90°,點(diǎn)D在AB上,且∠BAC=2∠DCB,求證:AC=AD.
小明發(fā)現(xiàn),除了直接用角度計(jì)算的方法外,還可以用下面兩種方法:
方法1:如圖2,作AE平分∠CAB,與CD相交于點(diǎn)E.
方法2:如圖3,作∠DCF=∠DCB,與AB相交于點(diǎn)F.
(1)根據(jù)閱讀材料,任選一種方法,證明AC=AD.
用學(xué)過的知識(shí)或參考小明的方法,解決下面的問題:
(2)如圖4,△ABC中,點(diǎn)D在AB上,點(diǎn)E在BC上,且∠BDE=2∠ABC,點(diǎn)F在BD上,且∠AFE=∠BAC,延長DC、FE,相交于點(diǎn)G,且∠DGF=∠BDE.
①在圖中找出與∠DEF相等的角,并加以證明;
②若AB=kDF,猜想線段DE與DB的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=2,O是BC邊的中點(diǎn),點(diǎn)E是正方形內(nèi)一動(dòng)點(diǎn),OE=2,連接DE,將線段DE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得DF,連接AE、CF.則線段OF長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加學(xué)校組織的智力競答活動(dòng),競賽中有兩道單選題完全不會(huì).這兩道單選題各有A.B.C三個(gè)選項(xiàng),第一道單選答案是B.第二道單選答案是C.最終兩道題小明隨機(jī)各寫了一個(gè)答案
(1)小明答對(duì)第一道題的概率是 .
(2)請(qǐng)用樹狀圖或者列表求出小明兩道題都答對(duì)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與軸、軸分別交于點(diǎn),,拋物線經(jīng)過點(diǎn),將點(diǎn)向右平移5個(gè)單位長度,得到點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求拋物線的對(duì)稱軸;
(3)若拋物線與線段恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四張正面標(biāo)有數(shù)字,背面顏色一樣的卡片,正面朝下放在桌面上,小紅從中隨機(jī)抽取一張卡片記下數(shù)字,再從余下的卡片中隨機(jī)抽取一張卡片記下數(shù)字.
(1)第一次抽到數(shù)字2的卡片的概率是 ;
(2)設(shè)第一次抽到的數(shù)字為,第二次抽到的數(shù)字為,點(diǎn)的坐標(biāo)為,請(qǐng)用樹狀圖或列表法求點(diǎn)在第三象限的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com