【題目】我們定義:有一組鄰邊相等且有一組對(duì)角互補(bǔ)的凸四邊形叫做等補(bǔ)四邊形
(1)概念理解
①根據(jù)上述定義舉一個(gè)等補(bǔ)四邊形的例子:
②如圖1,四邊形ABCD中,對(duì)角線BD平分∠ABC,∠A+∠C=180°,求證:四邊形ABCD是等補(bǔ)四邊形
(2)性質(zhì)探究:
③小明在探究時(shí)發(fā)現(xiàn),由于等補(bǔ)四邊形有一組對(duì)角互補(bǔ),可得等補(bǔ)四邊形的四個(gè)頂點(diǎn)共圓,如圖2,等補(bǔ)四邊形ABCD內(nèi)接于⊙O,AB=AD,則∠ACD ∠ACB(填“>”“<”或“=“);
④若將兩條相等的鄰邊叫做等補(bǔ)四邊形的“等邊”,等邊所夾的角叫做“等邊角”,它所對(duì)的角叫做“等邊補(bǔ)角”連接它們頂點(diǎn)的對(duì)角線叫做“等補(bǔ)對(duì)角線”,請(qǐng)用語(yǔ)言表述③中結(jié)論:
(3)問(wèn)題解決
在等補(bǔ)四邊形ABCD中,AB=BC=2,等邊角∠ABC=120°,等補(bǔ)對(duì)角線BD與等邊垂直,求CD的長(zhǎng).
【答案】(1)①正方形;②詳見(jiàn)解析;(2)③=;④等補(bǔ)四邊形的“等補(bǔ)對(duì)角線”平分“等邊補(bǔ)角”;(3)CD的值為2或4.
【解析】
(1)①正方形是等補(bǔ)四邊形.②如圖1中,作DM⊥BA于M,DN⊥BC于N,則∠DMA=∠DNC=90°,證明△ADM≌△CDN(AAS),推出AD=DC,即可解決問(wèn)題.
(2)③根據(jù)弦,弧,圓周角之間的關(guān)系解決問(wèn)題即可.④根據(jù)“等補(bǔ)對(duì)角線”,“等邊補(bǔ)角”等定義,利用③中結(jié)論即可解決問(wèn)題.
(3)分兩種情形:①如圖3﹣1中,當(dāng)BD⊥AB時(shí).②如圖3﹣2中,當(dāng)BD⊥BC時(shí),分別求解即可.
(1)①解:正方形是等補(bǔ)四邊形.
②證明:如圖1中,作DM⊥BA于M,DN⊥BC于N,則∠DMA=∠DNC=90°,
∵∠A+∠BCD=180°,∠BCD+∠DCN=180°,
∴∠A=∠DCN,
∵BD平分∠ABC,
∴DM=DN,
在△ADM和△CDN中,
,
∴△ADM≌△CDN(AAS),
∴AD=DC,
∴四邊形ABCD是等補(bǔ)四邊形.
(2)③解:如圖2中,
∵AD=AB,
∴=,
∴∠ACD=∠ACB.
故答案為=.
④解:由題意,等補(bǔ)四邊形的“等補(bǔ)對(duì)角線”平分“等邊補(bǔ)角”.
故答案為等補(bǔ)四邊形的“等補(bǔ)對(duì)角線”平分“等邊補(bǔ)角”.
(3)解:如圖3﹣1中,當(dāng)BD⊥AB時(shí),
∵∠ADC+∠ABC=180°,∠ABC=120°,
∴∠ADC=60°,
∵∠ABD=90°,
∴AD是⊙O的直徑,
∴∠ACD=90°,
∴∠DAC=∠DBC=30°,
∵BA=BC,∠ABC=120°,
∴∠BAC=∠ACB=30°,
∴∠BAC=∠BDC=30°,
∴∠CBD=∠CDB,
∴DC=BC=2.
如圖3﹣2中,當(dāng)BD⊥BC時(shí),
∵∠DBC=90°,
∴CD是⊙O的直徑,
∵BA=BC,∠ABC=120°,
∴∠BAC=∠ACB=30°,
∴∠BAC=∠BDC=30°,
∴CD=2BC=4,
綜上所述,滿(mǎn)足條件的CD的值為2或4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,,點(diǎn)分別是的中點(diǎn),連接.
(1)探索發(fā)現(xiàn):
圖1中,的值為_(kāi)____________;的值為_(kāi)________.
(2)拓展探究
若將繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)過(guò)程中的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明.
(3)問(wèn)題解決
當(dāng)旋轉(zhuǎn)至三點(diǎn)在同一直線時(shí),直接寫(xiě)出線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸相交于點(diǎn)A(-3,0)、點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),點(diǎn)D是第二象限內(nèi)拋物線上一動(dòng)點(diǎn).F點(diǎn)坐標(biāo)為(-4,0).
(1)求這條拋物線的解析式;并寫(xiě)出頂點(diǎn)坐標(biāo);
(2)當(dāng)D為拋物線的頂點(diǎn)時(shí),求△ACD的面積;
(3)連接OD交線段AC于點(diǎn)E.當(dāng)△AOE與△ABC相似時(shí),求點(diǎn)D的坐標(biāo);
(4)在x軸上方作正方形AFMN,將正方形AFMN沿x軸下方向向右平移t個(gè)單位,其中0≤t≤4,設(shè)正方形AFMN與△ABC的重疊總分面積為S,直接寫(xiě)出S關(guān)于t的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=-x2+(n-1)x+3的圖像與y軸交于點(diǎn)A,與x軸的負(fù)半軸交于點(diǎn)B(-2,0)
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P是這個(gè)二次函數(shù)圖像在第二象限內(nèi)的一線,過(guò)點(diǎn)P作y軸的垂線與線段AB交于點(diǎn)C,求線段PC長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)“學(xué)雷鋒、樹(shù)新風(fēng)、做文明中學(xué)生”號(hào)召,某校開(kāi)展了志愿者服務(wù)活動(dòng),活動(dòng)項(xiàng)目有“戒毒宣傳”、“文明交通崗”、“關(guān)愛(ài)老人”、“義務(wù)植樹(shù)”、“社區(qū)服務(wù)”等五項(xiàng),活動(dòng)期間,隨機(jī)抽取了部分學(xué)生對(duì)志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動(dòng),最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)被隨機(jī)抽取的學(xué)生共有多少名?
(2)在扇形統(tǒng)計(jì)圖中,求活動(dòng)數(shù)為3項(xiàng)的學(xué)生所對(duì)應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2000人,估計(jì)其中參與了4項(xiàng)或5項(xiàng)活動(dòng)的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩臺(tái)機(jī)器共同加工一批零件,一共用了小時(shí).在加工過(guò)程中乙機(jī)器因故障停止工作,排除故障后,乙機(jī)器提高了工作效率且保持不變,繼續(xù)加工.甲機(jī)器在加工過(guò)程中工作效率保持不變.甲、乙兩臺(tái)機(jī)器加工零件的總數(shù)(個(gè))與甲加工時(shí)間之間的函數(shù)圖象為折線,如圖所示.
(1)這批零件一共有 個(gè),甲機(jī)器每小時(shí)加工 個(gè)零件,乙機(jī)器排除故障后每小時(shí)加工 個(gè)零件;
(2)當(dāng)時(shí),求與之間的函數(shù)解析式;
(3)在整個(gè)加工過(guò)程中,甲加工多長(zhǎng)時(shí)間時(shí),甲與乙加工的零件個(gè)數(shù)相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段BC和動(dòng)點(diǎn)A構(gòu)成△ABC,∠BAC=120°,BC=3,則△ABC周長(zhǎng)的最大值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=ax2+bx+c經(jīng)過(guò)A、B、C(1,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)D的坐標(biāo)為(-1,0),在直線上有一點(diǎn)P,使ΔABO與ΔADP相似,求出點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在x軸下方的拋物線上,是否存在點(diǎn)E,使ΔADE的面積等于四邊形APCE的面積?如果存在,請(qǐng)求出點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系內(nèi),A,B為x軸上兩點(diǎn),以AB為直徑的⊙M交y軸于C,D兩點(diǎn),C為的中點(diǎn),弦AE交y軸于點(diǎn)F,且點(diǎn)A的坐標(biāo)為(﹣2,0),CD=8.
(1)求⊙M的半徑;
(2)動(dòng)點(diǎn)P在⊙M的圓周上運(yùn)動(dòng).①如圖1,當(dāng)EP平分∠AEB時(shí),求PN×EP的值;②如圖2,過(guò)點(diǎn)D作⊙M的切線交x軸于點(diǎn)Q,當(dāng)點(diǎn)P與點(diǎn)A,B不重合時(shí),是否為定值?若是,請(qǐng)求出其值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com