【題目】圖1是一臺實(shí)物投影儀,圖2是它的示意圖,折線O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AO⊥OM,垂足為點(diǎn)O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
將圖2中的BC繞點(diǎn)B向下旋轉(zhuǎn)45°,使得BCD落在BC′D′的位置(如圖3所示),此時C′D′⊥OM,AD′∥OM,AD′=16cm,求點(diǎn)B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結(jié)果精確到1cm)
【答案】B到水平桌面OM的距離為44.5cm.
【解析】
過B作BG⊥OM于G,過C′作C′H⊥BG于H,延長D′A交BG于E,則C′H=D′E,HE=C′D′=8,設(shè)AE=x,解直角三角形即可得到結(jié)論.
解:過B作BG⊥OM于G,
過C′作C′H⊥BG于H,延長D′A交BG于E,
則C′H=D′E,HE=C′D′=8,
設(shè)AE=x,
∴C′H=D′E=16+x,
∵∠BC′H=45°,
∴BH=C′H=16+x,
∴BE=16+x+8=24+x,
∵∠BAO=160°,
∴∠BAE=70°,
∴tan70°=,
解得:x=13.5,
∴BE=37.5,
∴BG=BE+EG=BE+AO=37.5+7=44.5cm,
答:B到水平桌面OM的距離為44.5cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為,四邊形ABCD為⊙O的內(nèi)接矩形,AD=6,M為DC中點(diǎn),E為⊙O上的一個動點(diǎn),連結(jié)DE,作DF⊥DE交射線EA于F,連結(jié)MF,則MF的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,AB⊥BC于點(diǎn)B,底座BC=1.3米,底座BC與支架AC所成的角∠ACB=60°,點(diǎn)H在支架AF上,籃板底部支架EH∥BC.EF⊥EH于點(diǎn)E,已知AH=米,HF=米,HE=1米.
(1)求籃板底部支架HE與支架AF所成的∠FHE的度數(shù).
(2)求籃板底部點(diǎn)E到地面的距離,(精確到0.01米)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),ABCD的邊AB在x軸上,頂點(diǎn)D在y軸的正半軸上,點(diǎn)C在第一象限,將△AOD沿y軸翻折,使點(diǎn)A落在x軸上的點(diǎn)E處,點(diǎn)B恰好為OE的中點(diǎn),DE與BC交于點(diǎn)F.若y(k≠0)圖象經(jīng)過點(diǎn)C,且S△BEF=1,則k的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】本學(xué)期,大興區(qū)開展了“恰同學(xué)少年,品詩詞美韻”中華傳統(tǒng)詩詞大賽活動小江統(tǒng)計(jì)了班級30名同學(xué)四月份的詩詞背誦數(shù)量,具體數(shù)據(jù)如表所示:
詩詞數(shù)量首 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
人數(shù) | 3 | 4 | 4 | 5 | 7 | 5 | 1 | 1 |
那么這30名同學(xué)四月份詩詞背誦數(shù)量的眾數(shù)和中位數(shù)分別是
A. 11,7 B. 7,5 C. 8,8 D. 8,7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,m),且與x鈾的一個交點(diǎn)在點(diǎn)(3,0)和(4,0)之間,則下列結(jié)論:①abc>0;②a﹣b+c>0;③b2=4a(c﹣m);④一元二次方程ax2+bx+c=m+1有兩個不相等的實(shí)數(shù)根,其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③MD=2AM=4EM;④AM=MF.其中正確結(jié)論的個數(shù)是( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com