【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,AB⊥BC于點(diǎn)B,底座BC=1.3米,底座BC與支架AC所成的角∠ACB=60°,點(diǎn)H在支架AF上,籃板底部支架EH∥BC.EF⊥EH于點(diǎn)E,已知AH=米,HF=米,HE=1米.
(1)求籃板底部支架HE與支架AF所成的∠FHE的度數(shù).
(2)求籃板底部點(diǎn)E到地面的距離,(精確到0.01米)(參考數(shù)據(jù):≈1.41,≈1.73)
【答案】(1)45°;(2)2.75米
【解析】
(1)由cos∠FHE==可得答案;
(2)延長(zhǎng)FE交CB的延長(zhǎng)線于M,過(guò)點(diǎn)A作AG⊥FM于G,過(guò)點(diǎn)H作HN⊥AG于N,據(jù)此知GM=AB,HN=EG,Rt△ABC中,求得AB=BCtan60°=1.3;Rt△ANH中,求得HN=AHsin45°=;根據(jù)EM=EG+GM可得答案.
解:(1)在Rt△EFH中,cos∠FHE===,
∴∠FHE=45°.
答:籃板底部支架HE與支架AF所成的角∠FHE的度數(shù)為45°;
(2)延長(zhǎng)FE交CB的延長(zhǎng)線于M,過(guò)點(diǎn)A作AG⊥FM于G,過(guò)點(diǎn)H作HN⊥AG于N,
則四邊形ABMG和四邊形HNGE是矩形,
∴GM=AB,HN=EG,
在Rt△ABC中,∵tan∠ACB=,
∴AB=BCtan60°=1.3×=1.3(米),
∴GM=AB=1.3(米),
在Rt△ANH中,∠FAN=∠FHE=45°,
∴HN=AHsin45°=×=(米),
∴EM=EG+GM=+1.3≈2.75(米).
答:籃板底部點(diǎn)E到地面的距離大約是2.75米.
故答案為:(1)45°;(2)2.75米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝加工廠甲、乙兩個(gè)車間共同加工一款休閑裝,且每人每天加工的件數(shù)相同,甲車間比乙車間少10人,甲車間每天加工服裝400件,乙車間每天加工服裝600件.
(1)求甲、乙兩車間各有多少人;
(2)甲車間更新了設(shè)備,平均每人每天加工的件數(shù)比原來(lái)多了10件,乙車間的加工效率不變,在兩個(gè)車間總?cè)藬?shù)不變的情況下,加工廠計(jì)劃從乙車間調(diào)出一部分人到甲車間,使每天兩個(gè)車間加工的總數(shù)不少于1314件,求至少要從乙車間調(diào)出多少人到甲車間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列4個(gè)結(jié)論:①abc<0;②2a+b=0;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在中,為射線上一點(diǎn),連接交于點(diǎn).
(1)如圖1,若點(diǎn)與點(diǎn)重合,且,求的長(zhǎng);
(2)如圖2,當(dāng)點(diǎn)在邊上時(shí),過(guò)點(diǎn)作于,延長(zhǎng)交于,連接.求證:.
(3)如圖3,當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)作于為的中點(diǎn),點(diǎn)在邊上且,已知,請(qǐng)直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,∠BDC=30°,DC=4,AE⊥BD于E,CF⊥BD于F,且E、F恰好是BD的三等分點(diǎn),AE、CF的延長(zhǎng)線分別交DC、AB于N、M點(diǎn),那么四邊形MENF的面積是( )
A.B.C.2D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象開口向上,圖象經(jīng)過(guò)點(diǎn)(﹣1,2)和(1,0),且與y軸相交于負(fù)半軸,給出五個(gè)結(jié)論:①a+b+c=0,②abc<0,③2a+b>0,④a+c=1,⑤當(dāng)﹣1<x<1時(shí),y<0;其中正確的結(jié)論的序號(hào)( )
A.①③⑤B.②③④C.①③④D.②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一臺(tái)實(shí)物投影儀,圖2是它的示意圖,折線O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AO⊥OM,垂足為點(diǎn)O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
將圖2中的BC繞點(diǎn)B向下旋轉(zhuǎn)45°,使得BCD落在BC′D′的位置(如圖3所示),此時(shí)C′D′⊥OM,AD′∥OM,AD′=16cm,求點(diǎn)B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結(jié)果精確到1cm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)踐與操作:我們?cè)趯W(xué)習(xí)四邊形的相關(guān)知識(shí)時(shí),認(rèn)識(shí)了平行四邊形、矩形、菱形、正方形等一些特殊的四邊形,下面我們用尺規(guī)作圖的方法來(lái)體會(huì)它們之間的聯(lián)系.如圖,在□ABCD中,AB=4,BC=6,∠ABC=60°,請(qǐng)完成下列任務(wù):
(1)在圖1中作一個(gè)菱形,使得點(diǎn)A、B為所作菱形的2個(gè)頂點(diǎn),另外2個(gè)頂點(diǎn)在□ABCD的邊上;在圖2中作一個(gè)菱形,使點(diǎn)B、D為所作菱形的2個(gè)頂點(diǎn),另外2個(gè)頂點(diǎn)在□ABCD的邊上;(尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)請(qǐng)?jiān)趫D形下方橫線處直接寫出你按(1)中要求作出的菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)準(zhǔn)備舉辦一次演講比賽,每班限定兩人報(bào)名,初三(1)班的三位同學(xué)(兩位女生,一位男生)都想報(bào)名參加,班主任李老師設(shè)計(jì)了一個(gè)摸球游戲,利用已學(xué)過(guò)的概率知識(shí)來(lái)決定誰(shuí)去參加比賽,游戲規(guī)則如下:在一個(gè)不透明的箱子里放3個(gè)大小質(zhì)地完全相同的乒乓球,在這3個(gè)乒乓球上分別寫上、、(每個(gè)字母分別代表一位同學(xué),其中、分別代表兩位女生,代表男生),攪勻后,李老師從箱子里隨機(jī)摸出一個(gè)乒乓球,不放回,再次攪勻后隨機(jī)摸出第二個(gè)乒乓球,根據(jù)乒乓球上的字母決定誰(shuí)去參加比賽。
(1)求李老師第一次摸出的乒乓球代表男生的概率;
(2)請(qǐng)用列表或畫樹狀圖的方法求恰好選定一名男生和一名女生參賽的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com