【題目】如圖,拋物線(xiàn)y=ax2+bx+c(a≠0對(duì)稱(chēng)軸為直線(xiàn)x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①abc<0;②4ac<b2;③方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;④3a+c>0;⑤當(dāng)y≥0時(shí),x的取值范圍是﹣1≤x≤3.其中結(jié)論正確的個(gè)數(shù)是( )
A. 1個(gè)B. 2個(gè)C. 3D. 4個(gè)
【答案】D
【解析】
利由拋物線(xiàn)的位置可對(duì)①進(jìn)行判斷;用拋物線(xiàn)與x軸的交點(diǎn)個(gè)數(shù)可對(duì)②進(jìn)行判斷;利用拋物線(xiàn)的對(duì)稱(chēng)性得到拋物線(xiàn)與x軸的一個(gè)交點(diǎn)坐標(biāo)為(3,0),則可對(duì)③進(jìn)行判斷;由對(duì)稱(chēng)軸方程得到b=-2a,然后根據(jù)x=-1時(shí)函數(shù)值為0可得到3a+c=0,則可對(duì)④進(jìn)行判斷;根據(jù)拋物線(xiàn)在x軸上方所對(duì)應(yīng)的自變量的范圍可對(duì)⑤進(jìn)行判斷.
∵拋物線(xiàn)開(kāi)口向下,
∴a<0,
∵對(duì)稱(chēng)軸在y軸的右側(cè),
∴->0,
∴b>0,
∵拋物線(xiàn)交y軸的正半軸,
∴c>0,
∴abc<0,故①正確;
∵拋物線(xiàn)與x軸有2個(gè)交點(diǎn),
∴b2-4ac>0,
∴b2>4ac,故②正確;
∵拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=1,
而點(diǎn)(-1,0)關(guān)于直線(xiàn)x=1的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(3,0),
∴方程ax2+bx+c=0的兩個(gè)根是x1=-1,x2=3,故③正確;
∵x=-=1,即b=-2a,
而x=-1時(shí),y=0,即a-b+c=0,
∴a+2a+c=0,即3a+c=0,故④錯(cuò)誤;
∵拋物線(xiàn)與x軸的兩點(diǎn)坐標(biāo)為(-1,0),(3,0),
∴當(dāng)-1≤x≤3時(shí),y≥0,故⑤正確;
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某教研機(jī)構(gòu)為了了解初中生課外閱讀名著的現(xiàn)狀,隨機(jī)抽取了某校50名初中生進(jìn)行調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成了以下不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
類(lèi)別 | 重視 | 一般 | 不重視 |
人數(shù) | a | 15 | b |
(1)求表格中a,b的值;
(2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;
(3)若某校共有初中生2000名,請(qǐng)估計(jì)該校“重視課外閱讀名著”的初中生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D為BC的中點(diǎn),點(diǎn)E在AB上,AD,CE交于點(diǎn)F,AE=EF=4,FC=9,則cos∠ACB的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,兩個(gè)形狀、大小完全相同的三角板OBC,DEF,按如圖所示的位置擺放,O為原點(diǎn),點(diǎn)B(12,0) ,點(diǎn)B與點(diǎn)D重合,邊OB與邊DE都在x軸上.其中,∠C=∠DEF=90°,∠OBC=∠F=30°.
(1)如圖①,求點(diǎn)C坐標(biāo);
(2)現(xiàn)固定三角板DEF,將三角板OBC沿x軸正方向平移,得到△O′B′C′ ,當(dāng)點(diǎn)O′ 落點(diǎn)D上時(shí)停止運(yùn)動(dòng).設(shè)三角板平移的距離為x,兩個(gè)三角板重疊部分的面積為y.求y關(guān)于x的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍;
(3)在(2)條件下,設(shè)邊BC的中點(diǎn)為點(diǎn)M,邊DF的中點(diǎn)為點(diǎn)N.直接寫(xiě)出在三角板平移過(guò)程中,當(dāng)點(diǎn)M與點(diǎn)N之間的距離最小時(shí),點(diǎn)M的坐標(biāo)(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品每天的銷(xiāo)售利潤(rùn)y(元)與銷(xiāo)售單價(jià)x(元)之間滿(mǎn)足關(guān)系:y=ax2+bx-75.其圖象如圖所示.
⑴a= ;b= ;
⑵銷(xiāo)售單價(jià)為多少元時(shí),該種商品每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)為多少元?
⑶由圖象可知,銷(xiāo)售單價(jià)x在 時(shí),該種商品每天的銷(xiāo)售利潤(rùn)不低于16元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),直線(xiàn)交軸于點(diǎn),將沿直線(xiàn)折疊,點(diǎn)恰好落在直線(xiàn)上的點(diǎn)處.
(1)求的長(zhǎng);
(2)如圖2,,是直線(xiàn)上的兩點(diǎn),若是以為斜邊的等腰直角三角形,求點(diǎn)的坐標(biāo);
(3)如圖3,點(diǎn)是直線(xiàn)上一點(diǎn),點(diǎn)是直線(xiàn)上一點(diǎn),且,均在第四象限,點(diǎn)是軸上一點(diǎn),若四邊形為菱形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月23日是世界讀書(shū)日,設(shè)立的目的是推動(dòng)更多的人去閱讀和寫(xiě)作.為了解學(xué)生的課外閱讀情況,對(duì)某校八年級(jí)1班“你最喜愛(ài)的課外閱讀書(shū)目”進(jìn)行調(diào)查(每名學(xué)生必須選一類(lèi)且只能選一類(lèi)閱讀書(shū)目),并根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩幅統(tǒng)計(jì)圖(不完整).
根據(jù)以上信息解決下列問(wèn)題
(1)所抽查的學(xué)生中,選史學(xué)類(lèi)的男生有______人,選哲學(xué)類(lèi)的女生有______人;
(2)扇形統(tǒng)計(jì)圖中“科學(xué)類(lèi)”所對(duì)應(yīng)扇形圓心角度數(shù)為_______°;
(3)若該校有2000名學(xué)生,請(qǐng)估計(jì)該校喜愛(ài)“科學(xué)類(lèi)”的學(xué)生共有多少人?
(4)從所抽取的選“哲學(xué)類(lèi)”的學(xué)生中,隨機(jī)選取兩名學(xué)生參加區(qū)級(jí)辯論賽,請(qǐng)用樹(shù)狀圖或列表法求出所選取的兩名學(xué)生恰好選中一個(gè)男生、一個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線(xiàn)與軸交于點(diǎn),按如圖方式作正方形、、,點(diǎn)、、在直線(xiàn)上,點(diǎn)、、在軸上,圖中陰影部分三角形的面積從左到右依次記為、、、,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“半日走遍江淮大地,安徽風(fēng)景盡在徽?qǐng)@”,位于省會(huì)合肥的徽?qǐng)@景點(diǎn)某年三月共接待游客萬(wàn)人,四月比三月旅游人數(shù)增加了,五月比四月游客人數(shù)增加了,已知三月至五月徽?qǐng)@的游客人數(shù)平均月增長(zhǎng)率為,則可列方程為( )
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com