【題目】如圖,將放在每個小正方形的邊長為的網(wǎng)格中,點均在格點上,
邊的長等于____________;
以點為旋轉(zhuǎn)中心,把順時針旋轉(zhuǎn),得到,使點的對應點恰好落在邊上,請在如圖所示的網(wǎng)格中,用無刻度的直尺,作出旋轉(zhuǎn)后的圖形,并簡要說明作圖的方法(不要求證明)________________________________________.
科目:初中數(shù)學 來源: 題型:
【題目】已知C為線段AB中點,∠ACM=α.Q為線段BC上一動點(不與點B重合),點P在射線CM上,連接PA,PQ,記BQ=kCP.
(1)若α=60°,k=1,
①如圖1,當Q為BC中點時,求∠PAC的度數(shù);
②直接寫出PA、PQ的數(shù)量關(guān)系;
(2)如圖2,當α=45°時.探究是否存在常數(shù)k,使得②中的結(jié)論仍成立?若存在,寫出k的值并證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了落實國務(wù)院的指示精神,地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在R△ABC中,∠ACB=90°,AC=6,BC=8,E為AC上一點,且AE=,AD平分∠BAC交BC于D.若P是AD上的動點,則PC+PE的最小值等于( )
A.B.C.4D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在以“放飛青春夢想,展示你我風采”為主題的校園文化藝術(shù)節(jié)期間,舉辦了.歌唱,.舞蹈,.繪畫,.演講共四個類別的比賽,要求每位學生必須參加且僅能參加一個類別.小紅隨機調(diào)查了部分學生的報名情況,并繪制了下列兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次調(diào)查的學生總?cè)藬?shù)是多少?扇形統(tǒng)計圖中“”部分的圓心角度數(shù)是多少?
(2)請將條形統(tǒng)計圖補充完整.
(3)若全校共有1500名學生,請估計該校報名參加繪畫和演講兩個類別的比賽的學生共有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)八年級有3000名學生參加“愛我中華”知識競賽活動,為了了解本次知識競賽的成績分布情況,從中抽取了部分學生的得分進行統(tǒng)計.
成績x(分) | 頻數(shù) | 頻率 |
50≤x<60 | 10 | a |
60≤x<70 | 16 | 0.08 |
70≤x<80 | b | 0.20 |
請你根據(jù)以上的信息,回答下列問題:
(1) a= ,b= ;
(2) 在扇形統(tǒng)計圖中,“成績x滿足50≤x<60”對應扇形的圓心角大小是 ;
(3) 若將得分轉(zhuǎn)化為等級,規(guī)定:50≤x<60評為D,60≤x<70評為C,70≤x<90評為B,90≤x<100評為A.這次全區(qū)八年級參加競賽的學生約有 學生參賽成績被評為“B”?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個兩位數(shù)中,個位數(shù)字比十位數(shù)字大1,則稱這個兩位數(shù)為“遞增數(shù)”.例如56就是一個“遞增數(shù)”,現(xiàn)有2,3,4,5四個數(shù)字.
(1)若先抽出的數(shù)字3作為十位數(shù),再從其余3個數(shù)字隨機抽出1個數(shù)字為個位數(shù),組成的兩位數(shù)恰為“遞增數(shù)”的概率為________.
(2)先從四個數(shù)中隨機抽出一個數(shù)作為十位數(shù),再從其余3個數(shù)字隨機抽出1個數(shù)字為個位數(shù).組成的兩位數(shù)恰為“遞增數(shù)”的概率是多少?請用列表或畫樹狀圖的方法分析.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其主視圖如圖.⊙O與矩形ABCD的邊BC,AD分別相切和相交(E,F(xiàn)是交點),已知EF=CD=8,則⊙O的半徑為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點D是邊BC上的動點,連接AD,點C關(guān)于直線AD的對稱點為點E,射線BE與射線AD交于點F.
(1)在圖1中,依題意補全圖形;
(2)記(),求的大。唬ㄓ煤的式子表示)
(3)若△ACE是等邊三角形,猜想EF和BC的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com